Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Toward Improving Understanding Of The Structure And Biophysics Of Glycosaminoglycans, Elizabeth K. Whitmore Apr 2021

Toward Improving Understanding Of The Structure And Biophysics Of Glycosaminoglycans, Elizabeth K. Whitmore

Electronic Theses and Dissertations

Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) that mediate PG bioactivities, including signal transduction, tissue morphogenesis, and matrix assembly. To understand GAG function, it is important to understand GAG structure and biophysics at atomic resolution. This is a challenge for existing experimental and computational methods because GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharides. Molecular dynamics (MD) simulations come close to overcoming this challenge but are only feasible for short GAG polymers. To address this problem, we developed an algorithm that applies conformations from unbiased all-atom explicit-solvent MD simulations of short GAG polymers …


Three-Dimensional Bedrock Channel Evolution With Smoothed Particle Hydrodynamics, Nick Richmond Dec 2018

Three-Dimensional Bedrock Channel Evolution With Smoothed Particle Hydrodynamics, Nick Richmond

Electronic Theses and Dissertations

Bedrock channels are responsible for balancing and communicating tectonic and climatic signals across landscapes, but it is difficult and dangerous to observe and measure the flows responsible for removing weakly-attached blocks of bedrock from the channel boundary. Consequently, quantitative descriptions of the dynamics of bedrock removal are scarce. Detailed numerical simulation of violent flows in three dimensions has been historically challenging due to technological limitations, but advances in computational fluid dynamics aided by high-performance computing have made it practical to generate approximate solutions to the governing equations of fluid dynamics. From these numerical solutions we gain detailed knowledge of the …


Using Hydroacoustics To Investigate Biological Responses In Fish Abundance To Restoration Efforts In The Penobscot River, Maine, Constantin C. Scherelis Aug 2017

Using Hydroacoustics To Investigate Biological Responses In Fish Abundance To Restoration Efforts In The Penobscot River, Maine, Constantin C. Scherelis

Electronic Theses and Dissertations

Spatiotemporal advantages linked to hydroacoustic sampling techniques have caused a surge in the use of these techniques for fisheries monitoring studies applied over long periods of time in marine systems. Dynamic physical conditions such as tidal height, boat traffic, floating debris, and suspended particle concentrations result in unwanted noise signatures that vary in intensity and location within a hydroacoustic beam over time and can be mixed with the acoustic returns from intended targets (e.g., fish). Typical processing filters applied over long term datasets to minimize noise and maximize signals do not address spatiotemporal fluctuations of noise in dynamic systems. We …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Investigating High Speed Localization Microscopy Through Experimental Methods, Data Processing Methods, And Applications Of Localization Microscopy To Biological Questions, Andrew J. Nelson Dec 2016

Investigating High Speed Localization Microscopy Through Experimental Methods, Data Processing Methods, And Applications Of Localization Microscopy To Biological Questions, Andrew J. Nelson

Electronic Theses and Dissertations

Fluorescence Photoactivation Localization Microscopy(FPALM) and other super resolution localization microscopy techniques can resolve structures with nanoscale resolution. Unlike techniques of electron microscopy, they are also compatible with live cell and live animal studies, making FPALM and related techniques ideal for answering questions about the dynamic nature of molecular biology in living systems. Many processes in biology occur on rapid sub second time scales requiring the imaging technique to be capable of resolving these processes not just with a high enough spatial resolution, but with an appropriate temporal resolution. To that end, this Dissertation in part investigates high speed FPALM as …


Topographic Signatures Of Geodynamics, Samuel G. Roy Aug 2015

Topographic Signatures Of Geodynamics, Samuel G. Roy

Electronic Theses and Dissertations

The surface of the Earth retains an imperfect memory of the diverse geodynamic, climatic, and surface transport processes that cooperatively drive the evolution of Earth. In this thesis I explore the potential of using topographic analysis and landscape evolution models to unlock past and/or present evidence for geodynamic activity. I explore the potential isolated effects of geodynamics on landscape evolution, particularly focusing on two byproducts of tectonic strain: rock displacement and damage. Field evidence supports a strong correlation between rock damage and erodibility, and a numerical sensitivity analysis supports the hypothesis that an order of magnitude weakening in rock, well …