Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

On The Origins Of Life — Modelling The Initial Stages Of Complex Coacervate Droplet Formation, Yixuan Wu Oct 2023

On The Origins Of Life — Modelling The Initial Stages Of Complex Coacervate Droplet Formation, Yixuan Wu

Western Libraries Undergraduate Research Awards (WLURAs)

Coacervate droplets are considered a plausible model for protocells due to their spontaneous formation and ability to compartmentalize macromolecules such as nucleic acid and peptides. Although experimental studies have observed and synthesized coacervates under different laboratory conditions, little is known about their structure. Here we present atomistic molecular dynamic simulations of the interactions between water and oppositely charged proteins that cluster together in a salt-dependent process. Observing such liquid-liquid phase separation on an atomic level would serve as a model for the initial stages of complex coacervate formation. Molecular Dynamics was used to compute diagnostics of the structure at different …


Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Self-Assembly Of Black Cumin Oil-Based Nanoemulsion On Various Surfactants: A Molecular Dynamics Study, Aulia Fikri Hidayat, Taufik Muhammad Fakih Dec 2021

Self-Assembly Of Black Cumin Oil-Based Nanoemulsion On Various Surfactants: A Molecular Dynamics Study, Aulia Fikri Hidayat, Taufik Muhammad Fakih

Makara Journal of Science

Black cumin is commonly used as traditional medicine due to its wide range of pharmacological potential. Black cumin oil (BCO) was often prepared as nanoemulsion to improve its solubility, stability, and bioavailability. This study was conducted to investigate the molecular behavior as well as structural evolution of BCO-surfactant systems during self-assembly micellization using molecular dynamics (MD) simulations. Several BCO constituents and variations of surfactants were employed to model BCO-surfactant systems. 50 ns of MD simulations were performed to elucidate their evolution of structures and physicochemical properties during formation. Results showed that BCO-tween20 and BCO-lecithin were able to form spherical-shaped micelles …


Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li Jul 2021

Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li

Chemistry: Faculty Publications and Other Works

Metal ions play important roles in various biological systems. Molecular dynamics (MD) using classical force field has become a popular research tool to study biological systems at the atomic level. However, meaningful MD simulations require reliable models and parameters. Previously we showed that the 12-6 Lennard-Jones nonbonded model for ions could not reproduce the experimental hydration free energy (HFE) and ion-oxygen distance (IOD) values simultaneously when ion has a charge of +2 or higher. We discussed that this deficiency arises from the overlook of the ion-induced dipole interaction in the 12-6 model, and this term is proportional to 1/r …


Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka Dec 2019

Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka

MSU Graduate Theses

We present a computational study of amorphous boron carbide (a-BxC) models using Molecular Dynamics (MD) studied with Stillinger-Weber (SW) and ReaxFF potential. The atomic structure factor (S(Q)), radial distribution function (RDF) and bond lengths comparison with other experimental and ab initio models shows that a random arrangement of icosahedra (B12, B11C) interconnected by chains (CCC, CBC) are present in a-BxC. Afterward, Hybrid Reverse Monte Carlo (HRMC) technique is used to recreate a-BxC structures. The existing SW potential parameters of Boron are optimized for the α-rhombohedral (Icosahedral B12 …


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Department of Chemistry: Dissertations, Theses, and Student Research

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get …


Structure And Thermodynamics Of Polyglutamine Peptides And Amyloid Fibrils Via Metadynamics And Molecular Dynamics Simulations, Riley Workman Aug 2018

Structure And Thermodynamics Of Polyglutamine Peptides And Amyloid Fibrils Via Metadynamics And Molecular Dynamics Simulations, Riley Workman

Electronic Theses and Dissertations

Aggregation of polyglutamine (polyQ)-rich polypeptides in neurons is a marker for nine neurodegenerative diseases. The molecular process responsible for the formation of polyQ fibrils is not well understood and represents a growing area of study. To enable development of treatments that could interfere with aggregation of polyQ peptides, it is crucial to understand the molecular mechanisms by which polyQ peptides aggregate into fibrils. Many experimental techniques have been employed to probe polyQ aggregation, however, observations from these studies have not lead to a unified understanding of the properties of these systems, instead yielding competing, fragmented theories of polyQ aggregation. This …


Organic Photovoltaics: A Charge Transfer Perspective In The Study Of Donor-Acceptor Systems, Marco Olguin Jan 2013

Organic Photovoltaics: A Charge Transfer Perspective In The Study Of Donor-Acceptor Systems, Marco Olguin

Open Access Theses & Dissertations

The present research involves the study of donor-acceptor (D/A) dyad complexes from a charge transfer energy perspective. The aim is to provide insight and predictive understanding into the charge transfer processes of the molecular-level components in donor-acceptor based organic solar cells using computational methods to describe photochemical processes at the quantum mechanical level within the Density Functional Theory (DFT) approximation. Predictive understanding is anchored in reproducing experimental results, wherein the present work a perturbative excited-state DFT method is described in detail and shown to give Charge Transfer (CT) energies in excellent agreement with benchmark experimental data. With an accurate excited …


Experimental And Theoretical Investigation Of Molecular Field Effects By Polarization-Resolved Resonant Inelastic X-Ray Scattering, Stephane Carniato, Renaud Guillemin, Wayne C. Stolte, Loic Journel, Richard Taieb, Dennis W. Lindle, Marc Simon Sep 2009

Experimental And Theoretical Investigation Of Molecular Field Effects By Polarization-Resolved Resonant Inelastic X-Ray Scattering, Stephane Carniato, Renaud Guillemin, Wayne C. Stolte, Loic Journel, Richard Taieb, Dennis W. Lindle, Marc Simon

Chemistry and Biochemistry Faculty Research

We present a combined theoretical and experimental study of molecular field effects on molecular core levels. Polarization-dependent resonant inelastic x-ray scattering is observed experimentally after resonant K-shell excitation of CF3Cl and HCl. We explain the linear dichroism observed in spin-orbit level intensities as due to molecular field effects, including singlet-triplet exchange, and interpret this behavior in terms of population differences in the 2px,y,z inner-shell orbitals. We investigate theoretically the different factors that can affect the electronic populations and the dynamical R dependence of the spin-orbit ratio. Finally, the results obtained are used to interpret the L-shell …


Molecular Dynamics Simulations Of Amphiphilic Molecules, Roger L. Mcmullen Jr. Jan 2005

Molecular Dynamics Simulations Of Amphiphilic Molecules, Roger L. Mcmullen Jr.

Seton Hall University Dissertations and Theses (ETDs)

.


Use Of Quantum Mechanical Calculations To Investigate Small Silicon Carbide Clusters, Jean W. Henry Mar 2001

Use Of Quantum Mechanical Calculations To Investigate Small Silicon Carbide Clusters, Jean W. Henry

Theses and Dissertations

Density Functional Theory (DFT) method was employed to model silicon carbide small clusters. Comparing the DFT calculation results with experimental results that observed by using photoelectron spectroscopy (PES), DFT predicts the same structures that experiment observed. For electron affinity, DFT results are in good agreement with experimental results, the root mean square negative offset 0.1 eV found using medium size of basis set (cc-pVDZ+) calculation. DFT results for vibrational frequencies are in good agreement with experiment results; the root mean square error is 72.5 cm-1 wave number. 16 ground state structures of SimCn (m ≤ 4, …


The Spectroscopy And Molecular Dynamics Of The High Frequency Ν1 6 Intermolecular Vibrations In Hcn‐‐‐Hf And Dcn‐‐‐Df, B. A. Wofford, M. W. Jackson, Shannon Lieb, J. W. Bevan Jan 1988

The Spectroscopy And Molecular Dynamics Of The High Frequency Ν1 6 Intermolecular Vibrations In Hcn‐‐‐Hf And Dcn‐‐‐Df, B. A. Wofford, M. W. Jackson, Shannon Lieb, J. W. Bevan

Scholarship and Professional Work - LAS

Gas phase rovibrational analysis of the high frequency intermolecular hydrogen bonded bending overtone 2ν0 60=1132.4783(2) cm 1] in HCN‐‐‐HF and its corresponding perdeuterated fundamental ν1 60=409.1660(2) cm 1] are reported. Evaluated rovibrational parameters provide the basis for quantitative modeling of the molecular dynamics associated with this vibration. A quantum mechanical calculation permits determination of the quadratic and quartic force constants K 6 6=537(17) and K 6 6 6 6=4.98(12) cm 1 which in turn are used to estimate the pertinent cubic band stretching interaction constants …


Molecular Dynamics In Hydrogen‐Bonded Interactions: A Preliminary Experimentally Determined Harmonic Stretching Force Field For Hcn‐‐‐Hf, B. A. Wofford, Shannon Lieb, J. W. Bevan Jan 1987

Molecular Dynamics In Hydrogen‐Bonded Interactions: A Preliminary Experimentally Determined Harmonic Stretching Force Field For Hcn‐‐‐Hf, B. A. Wofford, Shannon Lieb, J. W. Bevan

Scholarship and Professional Work - LAS

Observation of the 2ν1 overtone band in the hydrogen‐bonded complex HCN‐‐‐HF permits evaluation of the anharmonicity constant X 1 1=−116.9(1) cm 1 and determination of the anharmonicity corrected fundamental frequency ω1. This information, and available data from previous rovibrational analyses in the common and perdeuterated isotopic species of HCN‐‐‐HF, offer an opportunity for calculation of an approximate stretching harmonic force field. With the assumptions f 1 2=f 2 4=0.0, the remaining force constants (in mdyn/Å) are evaluated as: f 1 1=8.600(20), f 2 2=6.228(9), f 3 3=19.115(40), f 4 …