Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Three-Body Analytical Potential For Interacting Helium Atoms, Carol A. Parish, Clifford E. Dykstra Nov 1994

Three-Body Analytical Potential For Interacting Helium Atoms, Carol A. Parish, Clifford E. Dykstra

Chemistry Faculty Publications

Large basis set ab initio calculations have been carried out for a dense grid of points on the He, potential energy surface. Three-body contributions were extracted at every point, and a number of concise functional representations for the three-body potential surface were then examined. Three-body multipolar dispersion terms and other radial and angular terms were used in the representations, and an assessment of relative importance of the different terms is presented. Combined with a two-body He-He potential, the results of this work should offer a high quality interaction potential for simulations of aggregated helium.


Pairwise And Many-Body Contributions To Interaction Potentials In He(N) Clusters, Carol A. Parish, Clifford E. Dykstra Jan 1993

Pairwise And Many-Body Contributions To Interaction Potentials In He(N) Clusters, Carol A. Parish, Clifford E. Dykstra

Chemistry Faculty Publications

High level ab initio calculations have been carried out to assess the pairwise additivity of potentials in the attractive or well regions of the potential surfaces of clusters of helium atoms. A large basis set was employed and calculations were done at the Brueckner orbital coupled cluster level. Differences between calculated potentials for several interacting atoms and the corresponding summed pair potentials reveal the three‐body and certain higher order contributions to the interaction strengths. Attraction between rare gas atoms develops from dispersion, and so helium clusters provide the most workable systems for analyzing nonadditivity of dispersion. The results indicate that …


Nonadiabatic Theory Of Fine-Structure Branching Cross Sections For Na-He, Na-Ne, And Na-Ar Optical Collisions, Linda L. Vahala, P. S. Julienne, Mark D. Havey Jan 1986

Nonadiabatic Theory Of Fine-Structure Branching Cross Sections For Na-He, Na-Ne, And Na-Ar Optical Collisions, Linda L. Vahala, P. S. Julienne, Mark D. Havey

Electrical & Computer Engineering Faculty Publications

The nonadiabatic close-coupled theory of atomic collisions in a radiation field is generalized to include electron spin and is used to consider the weak-field Narare-gas (RG) optical collision Na(2S1/2)+RG+nhν μNa(2Pj)+RG+(n-1). The effects of detuning and incident energy on the branching into the atomic Na 3p2P3/2 and 3p2P1/2 states are examined. The cross sections σ(j) are found to have a strong asymmetry between red and blue detuning as well as a complex threshold and resonance structure dependence on energy. A partial cross-section analysis …