Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Exploring The Photophysics Of Brown Carbon Chromophores Using Laser-Based Spectroscopy And Computational Methods, Megan Elizabeth Alfieri Jan 2022

Exploring The Photophysics Of Brown Carbon Chromophores Using Laser-Based Spectroscopy And Computational Methods, Megan Elizabeth Alfieri

Dissertations, Theses, and Masters Projects

Atmospheric aerosols are made up of suspended liquids and solids in the atmosphere. These aerosols play a very important role in the solar energy exchange in Earth’s atmosphere as well have dramatic impact on human health. Different aerosols have different effects on the atmosphere depending on the physical properties of the aerosols.

The purpose of this research project is to understand how the structure of molecular chromophores impacts the solar absorption properties of aerosols. We propose a series of laboratory studies to investigate the outcomes from solar absorption of brown carbon chromophores: 1-phenylpyrrole, 2-phenyl-1-H-pyrrole, 2-phenylimadazole, as well as water complexes. …


Studies Of Molecular Dynamics Of Fmoc Amino Acids Using Solid State Deuteron Nuclear Magnetic Resonance Spectroscopy, Wei Xu Jan 2015

Studies Of Molecular Dynamics Of Fmoc Amino Acids Using Solid State Deuteron Nuclear Magnetic Resonance Spectroscopy, Wei Xu

Dissertations, Theses, and Masters Projects

The purpose of devising and validating models for intramolecular motions for FMOC amino acids is to quantify side chain motion in proteins which plays an important role in understanding biological structure function relations of proteins. In this thesis, spin lattice relaxation times (Ti) of FMOC amino acids were m easured under both static and magic angle spinning (MAS) condition at variable tem peratures. Lower activation energies of the relaxation times than the normal amino acids observed indicate a less sterically crowded environment for the rotation methyl group. A three-site jump model for the methyl group w as developed to fit …


Advanced Topographic Characterization Of Variously Prepared Niobium Surfaces And Linkage To Rf Losses, Chen Xu Jan 2013

Advanced Topographic Characterization Of Variously Prepared Niobium Surfaces And Linkage To Rf Losses, Chen Xu

Dissertations, Theses, and Masters Projects

Superconducting radio frequency (SRF) technology is widely adopted in particle accelerators. The shallow penetration (∼ 40 nm) of the RF into superconducting niobium lends great importance to SRF cavity interior surface chemistry and topography. These in turn are strongly influenced by the chemical etching "surface clean-up" that follows fabrication.;The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions …


Dark Matter In The Heavens And At Colliders: Models And Constraints, Reinard Primulando Jan 2012

Dark Matter In The Heavens And At Colliders: Models And Constraints, Reinard Primulando

Dissertations, Theses, and Masters Projects

In this dissertation, we investigate various aspects of dark matter detection and model building. Motivated by the cosmic ray positron excess observed by PAMELA, we construct models of decaying dark matter to explain the excess. Specifically we present an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. Alternatively, the decaying operator can arise as a Planck suppressed correction in a model with an Abelian discrete symmetry and vector-like states at …


Automated Peak Identification For Time -Of -Flight Mass Spectroscopy, Haijian Chen Jan 2006

Automated Peak Identification For Time -Of -Flight Mass Spectroscopy, Haijian Chen

Dissertations, Theses, and Masters Projects

The high throughput capabilities of protein mass fingerprints measurements have made mass spectrometry one of the standard tools for proteomic research, such as biomarker discovery. However, the analysis of large raw data sets produced by the time-of-flight (TOF) spectrometers creates a bottleneck in the discovery process. One specific challenge is the preprocessing and identification of mass peaks corresponding to important biological molecules. The accuracy of mass assignment is another limitation when comparing mass fingerprints with databases.;We have developed an automated peak picking algorithm based on a maximum likelihood approach that effectively and efficiently detects peaks in a time-of-flight secondary ion …


Solid State Nmr Characterization Of Conductive Polyanilines, Yanina Anatolievna Goddard Jan 2004

Solid State Nmr Characterization Of Conductive Polyanilines, Yanina Anatolievna Goddard

Dissertations, Theses, and Masters Projects

Different forms of ring deuterated polyaniline with different conductivity have been characterized by solid state deuteron nuclear magnetic resonance.;Quadrupole echo (QE) spectra of all forms of polyaniline consist of a superposition of lineshapes for nearly rigid aromatic rings and a small fraction of rings which undergo fast 180?? flips. The intensity of the fast flipping component is temperature dependent and different for conductive emeraldine salt (ES) and non-conductive emeraldine base (EB). This is a manifestation of the different structure and morphology of these polymers.;Simultaneous measurements of QE lineshapes and the relaxation time anisotropies allowed an accurate description of motion in …


Characterizing And Monitoring Changes In State Of Polymers During Cure And Use -Aging, Andrew Orschel Meyer Jan 2001

Characterizing And Monitoring Changes In State Of Polymers During Cure And Use -Aging, Andrew Orschel Meyer

Dissertations, Theses, and Masters Projects

Multi Angle Laser Light Scattering (MALLS) and Frequency Dependent Electromagnetic Sensing (FDEMS) provide unique characterizations of polymer systems during cure and use-aging. This research illustrates how MALLS is an extremely accurate technique for absolute characterization of macromolecules, giving molecular weight and size information that other widely used and accepted techniques are incapable of measuring. Application of MALLS to monitoring the changing state of a polyamide-11 system in a water aging environment led to the discovery of an equilibrium molecular weight which is the result of two competing reactions, hydrolysis-degradation and a newly discovered recombination-polymerization reaction. The discovery of this recombination …


Solid State Nmr Characterization Of Structural And Motional Parameter Distributions In Polyamidoammonium Dendrimers, Dariya Ivanovna Malyarenko Jan 2001

Solid State Nmr Characterization Of Structural And Motional Parameter Distributions In Polyamidoammonium Dendrimers, Dariya Ivanovna Malyarenko

Dissertations, Theses, and Masters Projects

The characterization of narrow distributions of structural and motional parameters, and their evolution during the broad glass transition, is performed for deuterated PAMAM dendrimer salts using solid state NMR. The broadening of deuteron quadrupole echo (QE) lineshapes is consistent with the presence of narrow hydrogen bond length distribution (sigmar < 0.25 A) at the spacer amide and branching tertiary amine sites. The temperature dependent averaging of the experimental lineshapes is explained on the basis of fast planar librations in the dendrimer interior, and fast rotation and intermediate regime libration (in an asymmetric cone) of the dendrimer termini. The amplitudes of libration are temperature dependent and higher for low generation dendrimers, while librational rates show Arrhenius behavior only within the glass transition region. In this region, the width of log-normal distribution of rates increases with temperature at sites associated with chlorine counterions. The largest distributions are still less than one order of magnitude wide, unlike the dendrimer in solution or the linear polymers. Interpenetrated low generations (G < 3), uniform intermediate generations (G = 3--5) with surface network, and backfolded high generations (G > 5), are distinguished by interior and termini dynamics.;In the regime of fast motion QE lineshapes are highly sensitive to the presence of narrow structural and motional parameter distributions, and provide constraints on motional geometry independent of rates. The precise characterization of narrow log-normal rate distributions in the intermediate regime can be …


Microstructural Characterization Of An Ultra-High-Performance Polyimide, April Heather Baugher Jan 1997

Microstructural Characterization Of An Ultra-High-Performance Polyimide, April Heather Baugher

Dissertations, Theses, and Masters Projects

The motivation for this study was to further characterize a relatively new high-temperature polymer for application as a matrix resin for carbon fiber composites. The two primary questions addressed in this study dealt with the structural and chemical changes occurring in these polymers on exposure to high temperature.;To investigate the structural changes in the heat-treated samples, a positron annihilation lifetime spectrometer was designed, built and optimized. Because the lifetime of a positron in a material reflects the electronic structure of the material in which it annihilates, measurements by positron annihilation lifetime spectroscopy can be used to investigate changes in a …


Synthesis And Characterization Of Boron-Containing Polymeric Materials For Neutron Shielding Applications, Michael B. Glasgow Jan 1996

Synthesis And Characterization Of Boron-Containing Polymeric Materials For Neutron Shielding Applications, Michael B. Glasgow

Dissertations, Theses, and Masters Projects

The development of boron-containing polymeric materials for neutron shielding applications was undertaken. Three types of materials were characterized for physical and thermal properties: boron powder-filled epoxy composites, carborane polyamides having boron chemically bonded into the polymer, and boron-loaded polyimide thin films. Addition of amorphous submicron boron powder did not affect significantly the thermal performance of the epoxy. The 17% boron loading produced a 26% increase in compressive failure strength and a 68% increase in the compressive modulus. 0.125 inch thick specimens containing 17% boron absorbed 92% of incident neutrons from a 5-Curie Pu/Be source compared with {dollar}<{dollar}1% for the neat epoxy. Dispersion of the boron in the epoxy was improved with the addition of larger size crystalline boron powders. Carborane polyamides containing up to 35% boron were thermally stable up to 400{dollar}\sp\circ{dollar}C in air. The polymers had hydrogen/boron ratios from 2.0 to 3.8 and were soluble in several organic solvents. Polymer solutions were processed into clear, colored thin films. Boron-filled polyamic acid solutions of a PMDA-ODA polyimide containing up to 10% boron were processed into thin films. Neutron absorption of the opaque films measured in a 5-Curie Pu/Be neutron source was linear with boron concentration and film thickness. The fraction of neutrons absorbed varied linearly with boron concentration and film thickness. The applicability of boron-containing materials to the aerospace, nuclear power and accelerator industries was investigated.


First Principles Linear Response Calculations Of Lattice Dynamics, Cheng-Zhang Wang Jan 1995

First Principles Linear Response Calculations Of Lattice Dynamics, Cheng-Zhang Wang

Dissertations, Theses, and Masters Projects

First principles calculations, using the density-functional theory and particularly the local density approximation (LDA), have achieved remarkable success in studying the properties of solid state systems. Although the basic results of these calculations are the electronic structures (eigenvalues, eigenfunctions, etc.) and the total energy of ground state, many other related physical properties can be deduced from them by investigating their response under external perturbations. Using the linear response method with linearized-augmented-plane-wave (LAPW) basis, we have calculated lattice dynamical properties of important semiconductors CuCl, SiC and ferroelectric KNbO{dollar}\sb3.{dollar} CuCl is known to exhibit large anharmonic effects and possibly a complicated multi-well …


Calculations Of The Interactions Of Energetic Ions With Materials For Protection Of Computer Memory And Biological Systems, Myung-Hee Y. Kim Jan 1995

Calculations Of The Interactions Of Energetic Ions With Materials For Protection Of Computer Memory And Biological Systems, Myung-Hee Y. Kim

Dissertations, Theses, and Masters Projects

Theoretical calculations were performed for the propagation and interactions of particles having high atomic numbers and energy through diverse shield materials including polymeric materials and epoxy-bound lunar regolith by using transport codes for laboratory ion beams and the cosmic ray spectrum. Heavy ions fragment and lose energy upon interactions with shielding materials of specified elemental composition, density, and thickness. A fragmenting heavy iron ion produces hundreds of isotopes during nuclear reactions, which are treated in the solution of the transport problem used here. A reduced set of 80 isotopes is sufficient to represent the charge distribution, but a minimum of …


A Study Of Molecular Order And Motion In Nematic Liquid Crystal Mixtures, Jon Michael Goetz Jan 1993

A Study Of Molecular Order And Motion In Nematic Liquid Crystal Mixtures, Jon Michael Goetz

Dissertations, Theses, and Masters Projects

Materials which flow like fluids, but possess anisotropic properties like molecular crystals, are called 'liquid crystals'. Studies of liquid crystals contribute to our understanding of how molecular orientation influences macroscopic properties. This thesis presents experimental and theoretical investigations of molecular order and dynamics in nematic liquid crystal systems. First, deuterium nuclear magnetic resonance is used to determine the degree of orientational order of both components of a liquid crystal mixture simultaneously. The temperature dependence of the four order parameters is interpreted using a newly developed mean field theory of nematic binary mixtures composed of biaxial molecules. Next, mean field theory …