Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

Thermal Degradation Of Erythritol, Sudheendra Gamoji Nov 2022

Thermal Degradation Of Erythritol, Sudheendra Gamoji

Physics

The Insulated Solar Electric Cooker (ISEC) is a double walled Aluminum pot with a resistive heater directly connected to a solar panel whose goal is to create and disseminate cheap solar cookers in rural areas that primarily rely on biomass for cooking. Phase Change Materials (PCMs) like Erythritol, a sugar substitute, take a tremendous amount of energy to melt, and when they solidify they release the energy. Through the use of PCMs, the ISECs will produce enough heat to cook food even after the sun sets. However, PCMs like Erythritol degrade over repeated heat exposure, so the purpose of this …


Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie Sep 2020

Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie

Master's Theses

Nanomaterials such as graphene oxide and carbon nanotubes, have demonstrated excellent properties for membrane desalination, including decrease of maintenance, increase of flux rate, simple solution casting, and impressive chemical inertness. Here, two projects are studied to investigate nanocarbon based membrane desalination. The first project is to prepare hybrid membranes with amyloid fibrils intercalated with graphene oxide sheets. The addition of protein amyloid fibrils expands the interlayer spacing between graphene oxide nanosheets and introduces additional functional groups in the diffusion pathways, resulting in increase of flux rate and rejection rate for the organic dyes. Amyloid fibrils also provide structural assistance to …


Anisotropic Conductive Adhesives For Interdigitated Back Contact (Ibc) Silicon Solar Cells, Katherine M. Lohmuste, Manuel Schnabel, Maikel F.A.M. Van Hest Aug 2018

Anisotropic Conductive Adhesives For Interdigitated Back Contact (Ibc) Silicon Solar Cells, Katherine M. Lohmuste, Manuel Schnabel, Maikel F.A.M. Van Hest

STAR Program Research Presentations

The current manufacturing process for solar panels using interdigitated back contact (IBC) silicon solar cells involves a multi-step metallization and interconnection process in which a substantial amount of silver is used. This work focuses on a new process using conductive adhesives (CA) which would increase efficiency and lower cost through a one-step metallization and interconnection process that combines with encapsulation using little silver and only requiring metal patterning on the back sheet or back glass. It would also not require direct metallization of the silicon, which would result in fewer defects, while increasing voltage and therefore efficiency. Silver-coated Poly(Methyl Methacrylate) …


X-Ray Spectroscopy Of Nio And Nanodiamond At Ssrl, Jackson Earl Jan 2018

X-Ray Spectroscopy Of Nio And Nanodiamond At Ssrl, Jackson Earl

STAR Program Research Presentations

The first aspect of this research project focuses on investigating the surface chemistry of high pressure high temperature (HPHT) nanodiamond by using X-ray spectroscopy techniques at the Stanford Synchrotron Radiation Lightsource (SSRL). HPHT nanodiamond is being examined as a biosensing tool for electric field detection based on the fluorescent nitrogen vacancy center hosted within diamond. With use of the transition edge spectrometer (TES), a state-of-the-art X-ray fluorescence detector, we are able to probe the surface and bulk properties of diamond. Preliminary work using density functional theory (DFT) has been done, offering insight into ground state energies and electronic structure. DFT …


Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou Aug 2015

Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou

STAR Program Research Presentations

Metal organic frameworks (MOFs) are synthetic materials made of a cage-like lattice of metal nodes connected by organic linkers. The pores between the nodes define the characteristics of the material. A MOF, MIL-101, has shown great capacity in the adsorption of carbon dioxide and methane, as well as in hydrogenation catalysis with palladium. While there has been success in synthesizing MIL-101 and other MOFs, the mechanistic details behind their assembly remain unknown. Understanding the synthesis mechanism is necessary to understand the kinetics involved and be able to produce this useful material on an industrial scale. Using MIL-101 as a prototypical …


A Lego® Brewster Angle Microscope For Quantitative Monolayer Film Analysis, Nicholas Benz Jul 2015

A Lego® Brewster Angle Microscope For Quantitative Monolayer Film Analysis, Nicholas Benz

Physics

In order to study single-molecule thick films and their phase behavior we built a Brewster Angle Microscope (BAM). BAM’s are inherently expensive due to their accuracy and precision. We built a fully functional BAM using Lego® Mindstorm® kits for the fraction of the price of a commercial BAM. And by utilizing the 10µm patented Lego® tolerance, comparable accuracy was attained. The BAM was mounted to a Langmuir-trough and will be used for laboratory experiments for optics and physical chemistry along with research on lung surfactant and on liquid crystals.


Exploring Soil Moisture Protocol Alternatives For The Classroom Setting, Garrett Smith Aug 2014

Exploring Soil Moisture Protocol Alternatives For The Classroom Setting, Garrett Smith

STAR Program Research Presentations

Climate change poses a direct threat to future water resources but current climate models suffer from uncertainties regarding the availability of regional water. SMAP or the Soil Moisture Active Passive mission seeks to make improvements to climate models by taking highly accurate, high resolution measurements of global soil moisture. To engage students around the world in a collection of meaningful data that may support the SMAP satellite mission, the Global Learning and Observations to Benefit the Environment program or GLOBE, has forged a partnership with NASA and JPL. GLOBE brings the power of citizen science to the SMAP mission, empowering …


Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner Aug 2014

Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Superamphiphobic surfaces strongly repel both water and oils. In this work, aluminum coupons are processed by sanding with various grit of sand paper to impart microscale roughness. Subsequent submersion of the aluminum substrate in boiling water grows nanoscale grass-like structures. The oxide layer of Al is slightly soluble in water. During a fast diffusion/equilibrium, Al2O3 nanograss grows on the surface. A low energy coating is then deposited on the surface. The micro and nanoscale features create re-entrant structures that trap air enabling contact liquid to be in a Cassie-Baxter state. Superamphiphobicity of the samples were confirmed by …


Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues In Bulk Mixtures Of Polythiophenes And Zinc Oxide Nanostructures, Grant T. Olson Jun 2014

Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues In Bulk Mixtures Of Polythiophenes And Zinc Oxide Nanostructures, Grant T. Olson

Master's Theses

Organic photovoltaics (OPVs) have received a great deal of focus in recent years as a possible alternative to expensive silicon based solar technology. Current challenges for organic photovoltaics are centered around improving their lifetimes and increasing their power conversion efficiencies. One approach to improving the lifetime of such devices has been the inclusion of inorganic metal oxide layers, but interaction between the metal oxides and common conjugated polymers is not favorable. Here we present two methods by which the interactions between polythiophenes and nanostructured ZnO can be made to be more favorable. Using the first method, direct side on attachment …


Experimenting With Polymer Blend Solar Cells And Active Layer Thickness, Ryan Blumenthal May 2013

Experimenting With Polymer Blend Solar Cells And Active Layer Thickness, Ryan Blumenthal

Physics

Bulk heterojunction organic photovoltaics utilize the electrical characteristics of semi-conductive polymers. These solution processable materials are beneficial because of their low material cost, light weight, and simple fabrication requirements. Our devices employ multiple photoactive polymers, P3HT and PCPDTBT, to absorb photons over a wide spectral range. We optimized various device characteristics including thickness and thermal anneal usage to reach a power conversion efficiency of 3.0% in AM1.5 sunlight. Device performance degrades over time due to atmospheric water and oxygen, prompting us to investigate device packaging to extend cell lifetime for additional testing.


Density Functional Theory And The Calculation Of Tcmg2O4 Spinel Lattice Parameters, Jon Karlo Macias Mar 2013

Density Functional Theory And The Calculation Of Tcmg2O4 Spinel Lattice Parameters, Jon Karlo Macias

Physics

The cohesive energy, lattice constant and bulk modulus of two simple HCP crystal structures of magnesium and technetium were calculated using the vienna ab initio simulation package (VASP) which is based on density functional theory (DFT). The same properties were determined for TcMg2O4 spinel. The theoretical results of the lattice constant of the pure crystals were compared to experimental results and found to be in excellent agreement with a difference of less than 2%. The results for the lattice constant of the TcMg2O4 spinel were found to be in excellent agreement as well with …


Exploring Methods For Earthquake Prediction: The Effects Of Water On The Flow Of Stress-Activated Electric Currents In Igneous Rocks, Aaron M. Jahoda, Friedemann T. Freund Aug 2011

Exploring Methods For Earthquake Prediction: The Effects Of Water On The Flow Of Stress-Activated Electric Currents In Igneous Rocks, Aaron M. Jahoda, Friedemann T. Freund

STAR Program Research Presentations

Much of the devastation and damage of earthquakes can be attributed to the fact that they occur suddenly and without much warning, which limits the ability of people to evacuate and/or properly prepare. One method, however, that might be used to predict seismic events is the generation of electric currents in rocks when stresses are applied. It is observed in this research that the application of direct force onto samples of igneous rock causes the rocks to generate a measurable current, which is attributed to positive-hole charges moving within the oxygen sub-lattice. Because large and changing forces are acted upon …