Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 651

Full-Text Articles in Physics

All-Optical Probes Of Particle-Like Charge Migration Dynamics, Kyle A. Hamer Apr 2024

All-Optical Probes Of Particle-Like Charge Migration Dynamics, Kyle A. Hamer

LSU Doctoral Dissertations

Particle-like charge migration (CM) is the coherent, back-and-forth motion of a positively-charged electron hole along the backbone of a molecule following a sudden ionization. CM in small molecules generally occurs on an Angstrom (10-10 m) spatial scale and an attosecond (10-18 s) timescale. I use time-dependent density-functional theory (TDDFT) to simulate CM modes in organic molecules, and to explore all-optical probes of this attosecond electron dynamics using high-harmonic spectroscopy (HHS). By leveraging my results from previous studies of two-center interferences in carbon dichalcogens, in which I separated the harmonic signal into contributions from individual Kohn-Sham orbitals, I first …


Modeling And Numerical Analysis Of The Cholesteric Landau-De Gennes Model, Andrew L. Hicks Apr 2024

Modeling And Numerical Analysis Of The Cholesteric Landau-De Gennes Model, Andrew L. Hicks

LSU Doctoral Dissertations

This thesis gives an analysis of modeling and numerical issues in the Landau-de Gennes (LdG) model of nematic liquid crystals (LCs) with cholesteric effects. We derive various time-step restrictions for a (weighted) $L^2$ gradient flow scheme to be energy decreasing. Furthermore, we prove a mesh size restriction, for finite element discretizations, that is critical to avoid spurious numerical artifacts in discrete minimizers that is not well-known in the LC literature, particularly when simulating cholesteric LCs that exhibit ``twist''. Furthermore, we perform a computational exploration of the model and present several numerical simulations in 3-D, on both slab geometries and spherical …


Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw Mar 2024

Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw

University Honors Theses

Spectroscopic end point detection is a common tool used for measuring slope changes in wavelength intensity. Using algorithms able to apply this concept, coatings will be able to be dynamically measured in real time and stopped at the appropriate level to ensure process uniformity. It is currently applied to reductive processes such as etching, where the surface will start to be eaten away, creating a plasma. When the entire amount of a material on a substrate has been eaten away, the plasma will change color as it is beginning to etch a different material. Using a spectrometer, this point where …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin Dec 2023

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin

All Theses

Optically stimulated luminescence (OSL) dosimetry was utilized to calibrate Al2O3:C powder dosimeters, available commercially as the nanoDot® from Landauer Inc., and compare the dosimeter response to radium-226 (226Ra) and cesium-137 (137Cs). The signal from the OSL was quantified using a microSTARii® OSL reader also produced by Landauer Inc. Dose-response curves were developed for 226Ra and 137Cs experiments (5 dosimeters each) at thirteen absorbed doses. Individual dosimeter response was tracked by serial number. Linear regression analysis was performed to determine if there were significant differences between the intercepts of the …


Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova Nov 2023

Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova

Doctoral Dissertations

Topological excitations are ubiquitous in nature, their charge being a naturally-quantized, conserved quantity that can exhibit particle-like behavior. Spinor Bose-Einstein condensates (BECs) are an exceptionally versatile system for the study and exploration of topological excitations. Between the spin-1 and spin-2 87Rb condensates there are seven possible broken-symmetry magnetic phases, with each one hosting unique opportunities for topological defects. We have created and observed several novel topological excitations in a spinor 87Rb BEC. In this dissertation I present and discuss three principal experimental findings: (1) The discovery of an Alice ring, or a half-quantum vortex ring, emerging from a …


Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa Nov 2023

Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa

Masters Theses

Graphene, an allotrope of carbon, has demonstrated exceptional mechanical, thermal, electronic, and optical properties. Complementary to such innate properties, structural modification through chemical functionalization or defect engineering can significantly enhance the properties and functionality of graphene and its derivatives. Hence, understanding structure-property relationships in graphene-based metamaterials has garnered much attention in recent years. In this thesis, we present molecular dynamics studies aimed at elucidating structure-property relationships that govern the thermomechanical response of interlayer-bonded graphene bilayers.

First, we present a systematic and thorough analysis of thermal transport in interlayer-bonded twisted bilayer graphene (IB-TBG). We find that the introduction of interlayer C-C …


The Fate Of The Crossbridge After Phosphate Rebinding: Implications For Fatigue, Christopher P. Marang Nov 2023

The Fate Of The Crossbridge After Phosphate Rebinding: Implications For Fatigue, Christopher P. Marang

Doctoral Dissertations

In response to repeated intense contractile activity, a muscle’s ability to generate force decreases due to the created state of muscular fatigue. This compromised force production state is dependent on changes within the microenvironment of muscle thought to alter the function of the force generating, contractile protein myosin. For example, phosphate (Pi), elevated during fatigue, has been suggested to alter how myosin generates force. However, the effects of Pi are not straightforward, as muscle fiber data suggest that Pi's interaction with myosin may be force-dependent. In particular, Pi has no effect on maximal shortening …


Equilibrium And Quench-Dynamical Studies Of Ultracold Fermions In Ring-Shaped Optical Traps, Daniel Gordon Allman Nov 2023

Equilibrium And Quench-Dynamical Studies Of Ultracold Fermions In Ring-Shaped Optical Traps, Daniel Gordon Allman

Dartmouth College Ph.D Dissertations

The unique capability to precisely tune the few and many-body configurations of
ultracold Fermi gases provides a multi-dimensional platform for studying novel, ex-
otic aspects of quantum systems. These aspects include superfluid/superconducting
phenomena supported by potentially exotic pairing mechanisms, non-equilibrium and
critical dynamics, and proposed quantum sensing or computing applications based on
atomtronics.
Ring geometries provide natural arenas for probing transport properties of super-
fluids. Metastable states of quantized superfluid flow —persistent currents— exhibit
remarkable properties, and the manner in which they form is an incredibly rich sub-
ject. Studies of quenched superfluids demonstrate that persistent currents can form
from …


Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui Nov 2023

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui

Electronic Theses and Dissertations

Multidimensional coherent spectroscopy (MDCS) is a quickly growing field that has a lot of advantages over more conventional forms of spectroscopy. These advantages all come from the fact that MDCS allows us to get time resolved correlated emission and absorption spectra using very precisely chosen interactions between the density matrix and the excitation laser. MDCS spectra gives the researcher a lot of information that can be extracted purely through qualitative analysis. This is possible because state couplings are entirely separated on the spectra, and once we know how to read the data, we can see how carriers transport in the …


Theoretical Framework Of Exchange Coupled Tripartite Spin Systems With Magnetic Anisotropy And Predictions Of Spin And Electronic Transport Properties For Their Use In Quantum Architectures, Eric Switzer Aug 2023

Theoretical Framework Of Exchange Coupled Tripartite Spin Systems With Magnetic Anisotropy And Predictions Of Spin And Electronic Transport Properties For Their Use In Quantum Architectures, Eric Switzer

Electronic Theses and Dissertations, 2020-

There has been significant interest in spin systems involving two or more coupled spins as a single logical qubit, particularly for scalable quantum computing architectures. Recent realizations include the so-called singlet-triplet qubits and coupled magnetic molecules. An important class of coupled-spin systems, the three-spin paradigm for spin greater than 1/2, has not yet been fully realized in scalable qubit architectures. In this thesis, I develop the theoretical framework to investigate a class of tripartite spin models for realistic systems. First, I model a spin 1/2 particle (e.g., an electron) and two spin 1 particles (in a dimer arrangement) coupled with …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Simulating Strongly Coupled Many-Body Systems With Quantum Algorithms, Manqoba Qedindaba Hlatshwayo Aug 2023

Simulating Strongly Coupled Many-Body Systems With Quantum Algorithms, Manqoba Qedindaba Hlatshwayo

Dissertations

The complexity of the nuclear many-body problem is a severe obstacle to finding a general and accurate numerical approach needed to simulate medium-mass and heavy nuclei. Even with the advent of exascale classical computing, the impediment of exponential growth of the Hilbert space renders the problem intractable for most classical calculations. In the last few years, quantum algorithms have become an attractive alternative for practitioners because quantum computers are more efficient in simulating quantum physics than classical computers. While a fully fault-tolerant universal quantum computer will not be realized soon, this dissertation explores quantum algorithms for simulating nuclear physics suitable …


Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish Aug 2023

Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish

All Dissertations

Highly charged ions (HCIs) exist in many hot astrophysical environments where they play an important role in plasma dynamics. Charge exchange involving highly charged ions has been shown to be responsible for many observed X-ray emissions from a variety of astrophysical sources. Proper modeling of these environments requires an understanding of this process, including the electronic structure of each ion species as well as their charge exchange cross sections. This dissertation investigates charge exchange processes with highly charged ions which are present in astrophysical environments via a laboratory-based study.

The Clemson University electron beam ion trap (CUEBIT) laboratory was utilized …


High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper Aug 2023

High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper

Optical Science and Engineering ETDs

Experimental observation of optical refrigeration using ytterbium doped silica glass in recent years has created a new solution for heat mitigation in high-power laser systems, nonlinear fiber experiments, integrated photonics, and precision metrology. Current efforts of different groups focus on compositional optimization, fiber fabrication, and investigating how much silica can be cooled with a laser. At the start of this work, the best effort in laser cooling ytterbium doped silica saw cooling by 6 K from room temperature. This dissertation follows the experimental efforts that culminated in the increase of this initial record by one order of magnitude. Comprehensive spectroscopic …


Study Of Radiation Effects In Gan-Based Devices, Han Gao Jul 2023

Study Of Radiation Effects In Gan-Based Devices, Han Gao

Electrical Engineering Theses and Dissertations

Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore …


A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler Jun 2023

A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler

Physics

Gamma rays principally interact with matter through Compton scattering, photoelectric effect, pair production, and triplet production. The focus of this simulation is to study the theoretical energy spectrum created by gamma rays from a Cesium-137 source, which produces gamma photons with an energy of 0.662 MeV. At this energy level, most interactions are results of Compton scatters and the photoelectric effect. Therefore, this simulation only models those two effects on gamma rays. Using Monte Carlo methods and the Metropolis algorithm to sample the probability distributions of the two effects allowed for the simulation of gamma rays in a Sodium Iodide …


Design Modular Command And Data Handling Subsystem Hardware Architectures, Abdullah Alsalmani Jun 2023

Design Modular Command And Data Handling Subsystem Hardware Architectures, Abdullah Alsalmani

Theses

Over the past few years, On-Board Computing Systems for satellites have been facing a limited level of modularity. Modularity is the ability to reuse and reconstruct the system from a set of predesigned units, with minimal additional engineering effort. CDHS hardware systems currently available have a limited ability to scale with mission needs. This thesis addresses the integration of smaller form factor CDHS modules used for nanosatellites with the larger counterparts that are used for larger missions. In particular, the thesis discusses the interfacing between Modular Computer Systems based on Open Standard commonly used in large spacecrafts and PC/104 used …


Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari May 2023

Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari

Optical Science and Engineering ETDs

Laser filamentation is a fascinating phenomenon that occurs when an intense laser beam travels through transparent materials, in particular air. At sufficiently high power (TW in the near IR, GW in the UV), instead of spreading out like a regular laser beam, something remarkable happens: the laser beam becomes tightly focused, creating a thin and intense column of light called a laser filament. Laser filamentation is characterized by two main properties: (I) a high-intensity core that remains narrow over long distances beyond the Rayleigh range and (II) a low-density plasma channel within the core. In recent years, laser filamentation has …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn May 2023

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Pointing Control And Stabilization Of The High-Energy Uv Laser For Laser-Assisted Charge Exchange, Martin Joseph Kay May 2023

Pointing Control And Stabilization Of The High-Energy Uv Laser For Laser-Assisted Charge Exchange, Martin Joseph Kay

Doctoral Dissertations

Laser-Assisted Charge Exchange (LACE) is an experimental method of charge exchange injection into a proton accumulator ring that is being developed at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory (ORNL) as an alternative to hazardous injection foils. The current scheme of LACE requires a high-energy, low-repetition-rate UV (355 nm) laser beam (140 mJ pulses at 10 Hz) to be transported over 65 meters to the laser-particle interaction point (IP) in a high-radiation area of the accelerator. Thermal effects and other disturbances along the free-space laser transport line cause the beam to slowly drift away from the IP …


Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy, Catherine Sturner May 2023

Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy, Catherine Sturner

Undergraduate Honors Theses

This thesis describes the work done to improve an external cavity diode laser. These improvements consisted of constructing an insulated housing to stabilize the temperature of the laser, tuning the proportional-integral-derivative feedback of the temperature controller, achieving resonance frequencies of rubidium, and implementing and optimizing feed-forward scanning of the frequency of the laser. The laser was then successfully used to measure the linewidth of another laser in the laboratory to better understand how that laser could be best used. The knowledge gained in this thesis can also be used to change the frequency of the laser to achieve other resonances …


Materials Characterization For Microwave Atom Chip Development, Jordan Shields May 2023

Materials Characterization For Microwave Atom Chip Development, Jordan Shields

Undergraduate Honors Theses

This thesis describes research to characterize materials to be implemented on a microwave atom trap chip, which will be able to trap and spatially manipulate atoms using the spin-specific microwave AC Zeeman effect. Potential applications of this research include atom-based interferometry and quantum computing.

Namely, this thesis describes the characterization of the following: (1) the dielectric constant of a well-characterized substrate, Rogers RO4350B, in order to provide proof-of-concept for a method that can be applied to the chip’s substrate, aluminum nitride (AlN), (2) the maximum current that will be able to be applied to the chip, and (3) surface roughness …


Spatial Variability Of Alkali-Metal Polarization, Lauren Vannell May 2023

Spatial Variability Of Alkali-Metal Polarization, Lauren Vannell

Undergraduate Honors Theses

An experiment was conducted at William & Mary to study how alkali polarization varies spatially in a spherical cell during the process of optical pumping. Similar cells are used to study the neutron via electron scattering from polarized 3He nuclei, and those experiments could be improved if alkali polarization is maximized and uniformly distributed throughout the cell. The results of this experiment indicate that the alkali polarization is non-uniform and more heavily concentrated on the side of the cell facing the pump laser.


Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back May 2023

Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back

All Theses

The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.

This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …


Spectra Of Atmospheric And Astronomical Molecules, W. D. Cameron May 2023

Spectra Of Atmospheric And Astronomical Molecules, W. D. Cameron

Physics Theses & Dissertations

Spectroscopy techniques are focused on spectra of molecules of interest to the Earth’s atmosphere and/or astronomy and astrophysics. Laboratory spectroscopy as well as remote satellite sensing are applied. Using the Fourier transform spectrometer aboard the Atmospheric Chemistry Experiment (ACE) satellite to measure the absorption spectra of the Earth’s atmosphere through solar occultation limb observation demonstrates that volcanic eruption plumes can be located and tracked through their SO2 content. The presence of those plumes is corroborated by overlaying infrared atmospheric aerosol extinction observed by the 1 μm imager on the same satellite. Tracking atmospheric aerosol movement with the ACE …


Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen Apr 2023

Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen

Honors Theses

At Jefferson Lab we use the CLAS12 detector to measure the neutron magnetic form factor. An accurate measurement of the CLAS12 neutron detection efficiency (NDE) is required. We use the nuclear reaction ���� → ��′��+�� as a source of tagged neutrons and obtain the NDE from the ratio of expected neutrons to detected ones. We assume the final state consists of ��′��+�� only, use the ��′��+ information to predict the neutron's position(expected) and then search for that neutron(detected). We select neutrons with the missing mass (MM) technique. We use simulation to validate our methods. We simulated events with the Monte-Carlo …


Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani Apr 2023

Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani

Optical Science and Engineering ETDs

Intriguing photophysical properties of color centers in diamond make them ideal candidates for many applications from imaging and sensing to quantum networking. In the first part of this work, we have studied the silicon vacancy (SiV) centers in diamond for nanoscale imaging applications. We showed that these centers are promising fluorophores for Stimulated Emission Depletion (STED) microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. In the second part, we built a femtotesla Radio-Frequency (RF) magnetometer based on the diamond nitrogen vacancy (NV) centers and magnetic flux concentrators. We used this sensor to remotely detect Nuclear Quadrupole Resonance …


The Quantitative Microanalysis Explorer: Introducing Web-Based Visualization For Optical, Electron, And Quantitative X-Ray Maps For Studying Lunar Samples, Angelina Minocha Mar 2023

The Quantitative Microanalysis Explorer: Introducing Web-Based Visualization For Optical, Electron, And Quantitative X-Ray Maps For Studying Lunar Samples, Angelina Minocha

Senior Honors Papers / Undergraduate Theses

Modern sample imaging techniques produce data in the form of large mosaics, wherein every pixel contains valuable mineralogical information. These heavy data files are challenging for most computers to load and process, furthermore access to lunar and other extraterrestrial samples is limited. We developed the QME Tool to display optical, electron, and quantitative x-ray maps in conjunction with one another to overcome these challenges and advance mineralogy data presentation and analysis. The images and quantitative data was collected using specialized techniques, followed by an extensive image co-registration process. The interface was developed using OpenSeadragon, “An open-source, web-based viewer for high-resolution …


Detecting High-Lying Rydberg States Using Two-Step Electromagnetically Induced Transparency And Frequency Modulation Spectroscopy Techniques, Kate Jensen Jan 2023

Detecting High-Lying Rydberg States Using Two-Step Electromagnetically Induced Transparency And Frequency Modulation Spectroscopy Techniques, Kate Jensen

Honors Theses

Resonant optical excitation of high-lying Rydberg states in room temperature 85Rb was investigated using light from two homemade external cavity diode lasers (ECDL). This was done using a ladder schema of the Electromagnetically Induced Transparency (EIT) technique. The approximate EIT wavelengths used were 780 nm (the probe beam) to provide step-wise excitation of valence rubidium electrons from the 5S1/2 → 5P3/2 tran- sition, and then 482 nm (the coupling beam) to excite from the 5P3/2 state to a high-lying Rydberg nD state with an orbital angular momentum = 2. Successful excitation of the Rydberg states was observed using Frequency Modulation …