Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

2019

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 39

Full-Text Articles in Physics

Dimension Reduction Techniques For High Dimensional And Ultra-High Dimensional Data, Subha Datta Dec 2019

Dimension Reduction Techniques For High Dimensional And Ultra-High Dimensional Data, Subha Datta

Dissertations

This dissertation introduces two statistical techniques to tackle high-dimensional data, which is very commonplace nowadays. It consists of two topics which are inter-related by a common link, dimension reduction.

The first topic is a recently introduced classification technique, the weighted principal support vector machine (WPSVM), which is incorporated into a spatial point process framework. The WPSVM possesses an additional parameter, a weight parameter, besides the regularization parameter. Most statistical techniques, including WPSVM, have an inherent assumption of independence, which means the data points are not connected with each other in any manner. But spatial data violates this assumption. Correlation between …


Local Non-Similar Solution Of Powell-Eyring Fluid Flow Over A Vertical Flat Plate, Hemangini Shukla, Hema C. Surati, M. G. Timol Dec 2019

Local Non-Similar Solution Of Powell-Eyring Fluid Flow Over A Vertical Flat Plate, Hemangini Shukla, Hema C. Surati, M. G. Timol

Applications and Applied Mathematics: An International Journal (AAM)

Our objective is to obtain the non-similarity solution of non-Newtonian fluid for Powell-Eyring model by a local non-similarity method. Here, free stream velocity is considered in power-law form (𝑈=𝑥m). The governing equations are transformed using non-similar transformations and derived equations are treated as ordinary differential equations. Non-similar solutions are obtained for different values of power-law index 𝑚 and stream-wise location 𝜉. Influence of various parameters on velocity and temperature field are presented graphically using MATLAB bvp4c solver.


Application Of Reduced Differential Transform Method For Solving Two-Dimensional Volterra Integral Equations Of The Second Kind, Seyyedeh R. Moosavi Noori, Nasir Taghizadeh Dec 2019

Application Of Reduced Differential Transform Method For Solving Two-Dimensional Volterra Integral Equations Of The Second Kind, Seyyedeh R. Moosavi Noori, Nasir Taghizadeh

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we propose new theorems of the reduced differential transform method (RDTM) for solving a class of two-dimensional linear and nonlinear Volterra integral equations (VIEs) of the second kind. The advantage of this method is its simplicity in using. It solves the equations straightforward and directly without using perturbation, Adomian’s polynomial, linearization or any other transformation and gives the solution as convergent power series with simply determinable components. Also, six examples and numerical results are provided so as to validate the reliability and efficiency of the method.


Planck's And Callendar's Blackbody Radiation Formulas And Their Fitness To Experimental Data, Max Tran Nov 2019

Planck's And Callendar's Blackbody Radiation Formulas And Their Fitness To Experimental Data, Max Tran

Publications and Research

In this paper, we compare the blackbody radiation density formula obtained with classical physics by Hugh L Callendar and the formula obtained by Max Planck using quantization of energy. We use R and Maxima to analyze their fitness on coordinating experimental data and indicate some limitations with experiments in this area.


Fluids In Music: The Mathematics Of Pan’S Flutes, Bogdan Nita, Sajan Ramanathan Oct 2019

Fluids In Music: The Mathematics Of Pan’S Flutes, Bogdan Nita, Sajan Ramanathan

Department of Mathematics Facuty Scholarship and Creative Works

We discuss the mathematics behind the Pan’s flute. We analyze how the sound is created, the relationship between the notes that the pipes produce, their frequencies and the length of the pipes. We find an equation which models the curve that appears at the bottom of any Pan’s flute due to the different pipe lengths.


Analog Implementation Of The Hodgkin-Huxley Model Neuron, Zachary D. Mobille, George H. Rutherford, Jordan Brandt-Trainer, Rosangela Follmann, Epaminondas Rosa Oct 2019

Analog Implementation Of The Hodgkin-Huxley Model Neuron, Zachary D. Mobille, George H. Rutherford, Jordan Brandt-Trainer, Rosangela Follmann, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Period Drift In A Neutrally Stable Stochastic Oscillator, Kevin Sanft Oct 2019

Period Drift In A Neutrally Stable Stochastic Oscillator, Kevin Sanft

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


How To Reconcile Randomness With Physicists' Belief That Every Theory Is Approximate: Informal Knowledge Is Needed, Ricardo Alvarez, Nick Sims, Christian Servin, Martine Ceberio, Vladik Kreinovich Oct 2019

How To Reconcile Randomness With Physicists' Belief That Every Theory Is Approximate: Informal Knowledge Is Needed, Ricardo Alvarez, Nick Sims, Christian Servin, Martine Ceberio, Vladik Kreinovich

Departmental Technical Reports (CS)

In this paper, we show that physicists' intuition about randomness is not fully consistent with their belief that every theory is only approximate. We also prove that there is no formal way to reconcile these two intuitions, this reconciliation has to be informal. Thus, there are fundamental reasons why informal knowledge is needed for describing the real world.


Derivation Of Direct Explicit Integrators Of Rk Type For Solving Class Of Seventh-Order Ordinary Differential Equations, Mohammed S. Mechee, Jawad K. Mshachal Sep 2019

Derivation Of Direct Explicit Integrators Of Rk Type For Solving Class Of Seventh-Order Ordinary Differential Equations, Mohammed S. Mechee, Jawad K. Mshachal

Karbala International Journal of Modern Science

The main contribution of this work is the development of direct explicit methods of Runge-Kutta (RK) type for solving class of seventh-order ordinary differential equations (ODEs) to improve computational efficiency. For this purpose, we have generalized RK, RKN, RKD, RKT, RKFD and RKM methods for solving class of first-, second-, third-, fourth-, and fifth-order ODEs. Using Taylor expansion approach, we have derived the algebraic equations of the order conditions for the proposed RKM integrators up to the tenth-order. Based on these order conditions, two RKM methods of fifth- and sixth-order with four- and five-stage are derived. The zero stability of …


Revisiting Singlino Dark Matter Of The Natural Z 3-Symmetric Nmssm In The Light Of Lhc, Waleed Abdallah, Arindam Chatterjee, Asesh Krishna Datta Sep 2019

Revisiting Singlino Dark Matter Of The Natural Z 3-Symmetric Nmssm In The Light Of Lhc, Waleed Abdallah, Arindam Chatterjee, Asesh Krishna Datta

Journal Articles

Inspired by the fact that relatively small values of the effective higgsino mass parameter of the Z3-symmetric Next-to-Minimal Supersymmetric Standard Model (NMSSM) could render the scenario ‘natural’, we explore the plausibility of having relatively light neutralinos and charginos (the electroweakinos or the ewinos) in such a scenario with a rather light singlino-like Lightest Supersymmetric Particle (LSP), which is a Dark Matter (DM) candidate, and singlet-dominated scalar excitations. By first confirming the indications in the existing literature that finding simultaneous compliance with results from the Large Hadron Collider (LHC) and those from various DM experiments with such light states is, in …


If Space-Time Is Discrete, We May Be Able To Solve Np-Hard Problems In Polynomial Time, Ricardo Alvarez, Nick Sims, Christian Servin, Martine Ceberio, Vladik Kreinovich Aug 2019

If Space-Time Is Discrete, We May Be Able To Solve Np-Hard Problems In Polynomial Time, Ricardo Alvarez, Nick Sims, Christian Servin, Martine Ceberio, Vladik Kreinovich

Departmental Technical Reports (CS)

Traditional physics assumes that space and time are continuous. However, this reasonable model leads to some serious problems. One the approaches that physicists follow to solve these problems is to assume that the space-time is actually discrete. In this paper, we analyze possible computational consequences of this discreteness. It turns out that in a discrete space-time, we may be able to solve NP-hard problems in polynomial time.


Avoiding Einstein-Podolsky-Rosen (Epr) Paradox: Towards A More Physically Adequate Description Of A Quantum State, Joseph Bernal, Olga Kosheleva, Vladik Kreinovich Aug 2019

Avoiding Einstein-Podolsky-Rosen (Epr) Paradox: Towards A More Physically Adequate Description Of A Quantum State, Joseph Bernal, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

The famous EPR paradox shows that if we describe quantum particles in the usual way -- by their wave functions -- then we get the following seeming contradiction. If we entangle the states of the two particles, then move them far away from each other, and measure the state of the first particle, then the state of the second particle immediately changes -- which contradicts to special relativity, according to which such immediate-action-at-a-distance is not possible. It is known that, from the physical viewpoint, this is not a real paradox: if we measure any property of the second particle, the …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Neutron Lifetime Puzzle And Nuclear Stability: A Possible Relation, Olga Kosheleva, Vladik Kreinovich Jul 2019

Neutron Lifetime Puzzle And Nuclear Stability: A Possible Relation, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

It is known that a free neutron decays into a proton, an electron, and an anti-neutrino. Interesting, recent attempts to measure the neutron's lifetime has led to two slightly different estimates: namely, the number of decaying neutrons is somewhat larger than the number of newly created protons. This difference is known as the neutron lifetime puzzle. A natural explanation for this difference is that in some cases, a neutron decays not into a proton, but into some other particle. If this explanation is true, this implies that nuclei with a sufficiently large number of neutrons will be unstable. Based on …


Meshless Modeling Of Flow Dispersion And Progressive Piping In Poroelastic Levees, Anthony Khoury, Eduardo Divo, Alain J. Kassab, Sai Kakuturu, Lakshmi Reddi Jun 2019

Meshless Modeling Of Flow Dispersion And Progressive Piping In Poroelastic Levees, Anthony Khoury, Eduardo Divo, Alain J. Kassab, Sai Kakuturu, Lakshmi Reddi

Publications

Performance data on earth dams and levees continue to indicate that piping is one of the major causes of failure. Current criteria for prevention of piping in earth dams and levees have remained largely empirical. This paper aims at developing a mechanistic understanding of the conditions necessary to prevent piping and to enhance the likelihood of self-healing of cracks in levees subjected to hydrodynamic loading from astronomical and meteorological (including hurricane storm surge-induced) forces. Systematic experimental investigations are performed to evaluate erosion in finite-length cracks as a result of transient hydrodynamic loading. Here, a novel application of the localized collocation …


Numerical Solution Of 3rd Order Ode Using Fdm: On A Moving Surface In Mhd Flow Of Sisko Fluid, Manisha Patel, Jayshri Patel, M. G. Timol Jun 2019

Numerical Solution Of 3rd Order Ode Using Fdm: On A Moving Surface In Mhd Flow Of Sisko Fluid, Manisha Patel, Jayshri Patel, M. G. Timol

Applications and Applied Mathematics: An International Journal (AAM)

A Similarity group theoretical technique is used to transform the governing nonlinear partial differential equations of two dimensional MHD boundary layer flow of Sisko fluid into nonlinear ordinary differential equations. Then the resulting third order nonlinear ordinary differential equation with corresponding boundary conditions is linearised by Quasi linearization method. Numerical solution of the linearised third order ODE is obtained using Finite Difference method (FDM). Graphical presentation of the solution is given.


Two Dimensional Mathematical Study Of Flow Dynamics Through Emphysemic Lung, Jyoti Kori, Pratibha _ Jun 2019

Two Dimensional Mathematical Study Of Flow Dynamics Through Emphysemic Lung, Jyoti Kori, Pratibha _

Applications and Applied Mathematics: An International Journal (AAM)

There are various lung diseases, such as chronic obstructive pulmonary disease, asthma, fibrosis, emphysema etc., occurred due to deposition of different shape and size particles. Among them we focused on flow dynamics of viscous air through an emphysemic lung. We considered lung as a porous medium and porosity is a function of tidal volume. Two dimensional generalized equation of momentum is used to study the flow of air and equation of motion is used to study the flow of nanoparticles of elongated shape. Darcy term for flow in porous media and shape factor for nonspherical nanoparticles are used in mathematical …


Resonance In The Motion Of A Geocentric Satellite Due To Poynting-Robertson Drag And Equatorial Ellipticity Of The Earth, Charanpreet Kaur, Binay K. Sharma, Sushil Yadav Jun 2019

Resonance In The Motion Of A Geocentric Satellite Due To Poynting-Robertson Drag And Equatorial Ellipticity Of The Earth, Charanpreet Kaur, Binay K. Sharma, Sushil Yadav

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, the problem of resonance in a motion of a geocentric satellite is numerically investigated under the consolidated gravitational forces of the Sun, the Earth including Earth’s equatorial ellipticity parameter and Poynting-Robertson (P-R) drag. We are presuming that bodies lying on an ecliptic plane are the Sun and the Earth, and satellite on orbital plane. Resonance is monitored between satellite’s mean motion and average angular velocity of the Earth around the Sun, and also between satellite’s mean motion and equatorial ellipticity parameter of the Earth. We also perform a systematic and thorough analysis in an attempt to understand …


Generalized Bagley-Torvik Equation And Fractional Oscillators, Mark Naber, Lucas Lymburner Jun 2019

Generalized Bagley-Torvik Equation And Fractional Oscillators, Mark Naber, Lucas Lymburner

Applications and Applied Mathematics: An International Journal (AAM)

In this paper the Bagley-Torvik Equation is considered with the order of the damping term allowed to range between one and two. The solution is found to be representable as a convolution of trigonometric and exponential functions with the driving force. The properties of the effective decay rate and the oscillation frequency with respect to the order of the fractional damping are also studied. It is found that the effective decay rate and oscillation frequency have a complex dependency on the order of the derivative of the damping term and exhibit properties one might expect of a thermodynamic Equation of …


Comparative Analysis On Angular Flow And Mass Transfer In Haemodialysis, J. K. Misra, Pradeep K. Singh, Naseem Ahmad, Pankaj Sharma Jun 2019

Comparative Analysis On Angular Flow And Mass Transfer In Haemodialysis, J. K. Misra, Pradeep K. Singh, Naseem Ahmad, Pankaj Sharma

Applications and Applied Mathematics: An International Journal (AAM)

Healthy kidney cleans blood and removes unwanted materials in the form of urine. When the kidney does not work properly, dialysis is one of the best solutions. Dialysis required if unhealthy kidney does not remove enough wastes and fluid from the blood. This usually happens when only 10 - 15 % of kidney’s function left. A dialyzer is used to clean blood. In an attempt to address clinical and experimental discrepancies, compartmental theoretical models have been used. Noda et al. (1979) were among the first to introduce a theoretical model on mass transfer using countercurrent flows. Their proposed model assumes …


Transient Thermal Stresses Due To Axisymmetric Heat Supply In A Semi-Infinite Thick Circular Plate, S. D. Warbhe, K. C. Deshmukh Jun 2019

Transient Thermal Stresses Due To Axisymmetric Heat Supply In A Semi-Infinite Thick Circular Plate, S. D. Warbhe, K. C. Deshmukh

Applications and Applied Mathematics: An International Journal (AAM)

The present paper deals with the determination of thermal stresses in a semi-infinite thick circular plate of a finite length and infinite extent subjected to an axisymmetric heat supply. A thick circular plate is considered having constant initial temperature and arbitrary heat flux is applied on the upper and lower face. The governing heat conduction equation has been solved by using integral transform technique. The results are obtained in terms of Bessel’s function. The thermoelastic behavior has been computed numerically and illustrated graphically for a steel plate.


Analysis Of An Eco-Epidemiological Model Under Optimal Control Measures For Infected Prey, Alfred Hugo, Emanuel Simanjilo Jun 2019

Analysis Of An Eco-Epidemiological Model Under Optimal Control Measures For Infected Prey, Alfred Hugo, Emanuel Simanjilo

Applications and Applied Mathematics: An International Journal (AAM)

This paper examines the analysis of an eco-epidemiological model with optimal control strategies for infected prey. A model is proposed and analyzed qualitatively using the stability theory of the differential equations. A local and global study of the model is performed around the disease-free equilibrium and the endemic equilibrium to analyze the global stability using the Lyapunov function. The time-dependent control is introduced into the system to determine the best strategy for controlling the disease. The results obtained suggested the separation of the infected population plays a vital role in disease elimination.


Solitary And Periodic Exact Solutions Of The Viscosity-Capillarity Van Der Waals Gas Equations, Emad A. Az-Zo’Bi Jun 2019

Solitary And Periodic Exact Solutions Of The Viscosity-Capillarity Van Der Waals Gas Equations, Emad A. Az-Zo’Bi

Applications and Applied Mathematics: An International Journal (AAM)

Periodic and soliton solutions are derived for the (1+1)-dimensional van der Waals gas system in the viscosity-capillarity regularization form. The system is handled via the e-φ(ξ) -expansion method. The obtained solutions have been articulated by the hyperbolic, trigonometric, exponential and rational functions with arbitrary constants. Mathematical analysis and numerical graphs are provided for some solitons, periodic and kink solitary wave solutions to visualize the dynamics of equations. Obtained results reveal that the method is very influential and effective tool for solving nonlinear partial differential equations in applied mathematics.


Rare Event Sampling In Applied Stochastic Dynamical Systems, Yiming Yu May 2019

Rare Event Sampling In Applied Stochastic Dynamical Systems, Yiming Yu

Dissertations

Predicting rare events is a challenging problem in many complex systems arising in physics, chemistry, biology, and materials science. Simulating rare events is often prohibitive in such systems due to their high dimensionality and the numerical cost of their simulation, yet analytical expressions for rare event probabilities are usually not available. This dissertation tackles the problem of approximation of the probability of rare catastrophic events in optical communication systems and spin-torque magnetic nanodevices. With the application of the geometric minimum action method, the probability of pulse position shifts or other parameter changes in a model of an actively mode-locked laser …


Exact Feedback Linearization Of Systems With State-Space Modulation And Demodulation, Nikolaos I. Xiros Deng May 2019

Exact Feedback Linearization Of Systems With State-Space Modulation And Demodulation, Nikolaos I. Xiros Deng

University of New Orleans Theses and Dissertations

The control theory of nonlinear systems has been receiving increasing attention in recent years, both for its technical importance as well as for its impact in various fields of application. In several key areas, such as aerospace, chemical and petrochemical industries, bioengineering, and robotics, a new practical application for this tool appears every day. System nonlinearity is characterized when at least one component or subsystem is nonlinear. Classical methods used in the study of linear systems, particularly superposition, are not usually applied to the nonlinear systems. It is necessary to use other methods to study the control of these systems. …


Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor May 2019

Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor

Senior Theses

Complexity is prevalent both in natural and in human-made systems, yet is not well understood quantitatively. Qualitatively, complexity describes a phenomena in which a system composed of individual pieces, each having simple interactions with one another, results in interesting bulk properties that would otherwise not exist. One example of a complex biological system is the bird flock, in particular, a starling murmuration. Starlings are known to move in the direction of their neighbors and avoid collisions with fellow starlings, but as a result of these simple movement choices, the flock as a whole tends to exhibit fluid-like movements and form …


Realization Of Tensor Product And Of Tensor Factorization Of Rational Functions, Daniel Alpay, Izchak Lewkowicz Apr 2019

Realization Of Tensor Product And Of Tensor Factorization Of Rational Functions, Daniel Alpay, Izchak Lewkowicz

Mathematics, Physics, and Computer Science Faculty Articles and Research

We study the state space realization of a tensor product of a pair of rational functions. At the expense of “inflating” the dimensions, we recover the classical expressions for realization of a regular product of rational functions. Under an additional assumption that the limit at infinity of a given rational function exists and is equal to identity, we introduce an explicit formula for a tensor factorization of this function.


Analytical Wave Solutions Of The Space Time Fractional Modified Regularized Long Wave Equation Involving The Conformable Fractional Derivative, M. Hafiz Uddin, Md. Ashrafuzzaman Khan, M. Ali Akbar, Md. Abdul Haque Mar 2019

Analytical Wave Solutions Of The Space Time Fractional Modified Regularized Long Wave Equation Involving The Conformable Fractional Derivative, M. Hafiz Uddin, Md. Ashrafuzzaman Khan, M. Ali Akbar, Md. Abdul Haque

Karbala International Journal of Modern Science

The space time fractional modified regularized long wave equation is a model equation to the gravitational water waves in the long-wave occupancy, shallow waters waves in coastal seas, the hydro-magnetic waves in cold plasma, the phonetic waves in dissident quartz and phonetic gravitational waves in contractible liquids. In nonlinear science and engineering, the mentioned equation is applied to analyze the one way tract of long waves in seas and harbors. In this study, the closed form traveling wave solutions to the above equation are evaluated due to conformable fractional derivatives through double (G'⁄G,1⁄G)-expansion method and the Exp-function method. The existence …


Mhd Boundary Layer Flow Of Darcy-Forchheimer Mixed Convection In A Nanofluid Saturated Porous Media With Viscous Dissipation, S. Jagadha, P. Amrutha Mar 2019

Mhd Boundary Layer Flow Of Darcy-Forchheimer Mixed Convection In A Nanofluid Saturated Porous Media With Viscous Dissipation, S. Jagadha, P. Amrutha

Applications and Applied Mathematics: An International Journal (AAM)

The steady laminar viscous incompressible nanofluid flow of mixed convection and mass transfer about an isothermal vertical flat plate embedded in Darcy porous medium in the presence of magnetic field and viscous dissipation is analyzed. The governing partial differential equations are converted into ordinary differential equations by similarity transformations. The coupled nonlinear ordinary differential equations are linearized by Quasi-linearization technique. The linear ordinary differential equations are solved by using implicit finite difference scheme with the help of C-programming. Numerical calculations are carried out for different values of dimensionless parameter such as magnetic field, mixed convection parameter, inertia parameter, buoyancy ratio …


Optimal Homotopy Asymptotic Solution For Thermal Radiation And Chemical Reaction Effects On Electrical Mhd Jeffrey Fluid Flow Over A Stretching Sheet Through Porous Media With Heat Source, Gossaye Aliy, Naikoti Kishan Mar 2019

Optimal Homotopy Asymptotic Solution For Thermal Radiation And Chemical Reaction Effects On Electrical Mhd Jeffrey Fluid Flow Over A Stretching Sheet Through Porous Media With Heat Source, Gossaye Aliy, Naikoti Kishan

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, the problem of thermal radiation and chemical reaction effects on electrical MHD Jeffrey fluid flow over a stretching surface through a porous medium with the heat source is presented. We obtained the approximate analytical solution of the nonlinear differential equations governing the problem using the Optimal Homotopy Asymptotic Method (OHAM). Comparison of results has been made with the numerical solutions from the literature, and a very good agreement has been observed. Subsequently, effects of governing parameters of the velocity, temperature and concentration profiles are presented graphically and discussed.