Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni Dec 2023

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni

Electronic Thesis and Dissertation Repository

This Ph.D. thesis presents a compilation of the scientific papers I published over the last three years during my Ph.D. in loop quantum gravity (LQG). First, we comprehensively introduce spinfoam calculations with a practical pedagogical paper. We highlight LQG's unique features and mathematical formalism and emphasize the computational complexities associated with its calculations. The subsequent articles delve into specific aspects of employing high-performance computing (HPC) in LQG research. We discuss the results obtained by applying numerical methods to studying spinfoams' infrared divergences, or ``bubbles''. This research direction is crucial to define the continuum limit of LQG properly. We investigate the …


The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


A Molecular Dynamics Study Of Polymer Chains In Shear Flows And Nanocomposites, Venkat Bala May 2022

A Molecular Dynamics Study Of Polymer Chains In Shear Flows And Nanocomposites, Venkat Bala

Electronic Thesis and Dissertation Repository

In this work we study single chain polymers in shear flows and nanocomposite polymer melts extensively through the use of large scale molecular dynamics simulations through LAMMPS. In the single polymer chain shear flow study, we use the Lattice Boltzmann method to simulate fluid dynamics and also include thermal noise as per the \emph{fluctuation-dissipation} theorem in the system. When simulating the nanocomposite polymer melts, we simply use a Langevin thermostat to mimic a heat bath. In the single polymer in shear flow study we investigated the margination of a single chain towards solid surfaces and how strongly the shear flow …


Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz Oct 2021

Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz

Electronic Thesis and Dissertation Repository

When a laminar inclined circular jet impinges on a horizontal surface, it forms a non-circular hydraulic jump governed by a non-axisymmetric flow. In this thesis, we use the boundary-layer and thin-film approaches in the three dimensions to theoretically analyse such flow and the hydraulic jumps produced in such cases. We particularly explore the interplay among inertia, gravity, and the effective inclination angle on the non-axisymmetric flow.

The boundary-layer height is found to show an azimuthal dependence at strong gravity level only; however, the thin film thickness as well as the hydraulic jump profile showed a strong non-axisymmetric behaviour at all …


Symphas: A Modular Api For Phase-Field Modeling Using Compile-Time Symbolic Algebra, Steven A. Silber Aug 2021

Symphas: A Modular Api For Phase-Field Modeling Using Compile-Time Symbolic Algebra, Steven A. Silber

Electronic Thesis and Dissertation Repository

The phase-field method is a common approach to qualitative analysis of phase transitions. It allows visualizing the time evolution of a phase transition, providing valuable insight into the underlying microstructure and the dynamical processes that take place. Although the approach is applied in a diverse range of fields, from metal-forming to cardiac modelling, there are a limited number of software tools available that allow simulating any phase-field problem and that are highly accessible. To address this, a new open source API and software package called SymPhas is developed for simulating phase-field and phase-field crystal in 1-, 2- and 3-dimensions. Phase-field …


Numerical Studies Of Electrohydrodynamic Flow Induced By Corona And Dielectric Barrier Discharges, Chaoao Shi Feb 2018

Numerical Studies Of Electrohydrodynamic Flow Induced By Corona And Dielectric Barrier Discharges, Chaoao Shi

Electronic Thesis and Dissertation Repository

Electrohyrodynamic (EHD) flow produced by gas discharges allows the control of airflow through electrostatic forces. Various promising applications of EHD can be considered, but this requires a deeper understanding of the physical mechanisms involved.

This thesis investigates the EHD flow generated by three forms of gas discharge. First, a multiple pin-plate EHD dryer associated with the positive corona discharge is studied using a stationary model. Second, the dynamics of a dielectric barrier discharge (DBD) plasma actuator is simulated with a time-dependent solver. Third, different configurations of the extended DBD are explored to enhance the EHD flow.

The results of the …


Simulation Of Driven Elastic Spheres In A Newtonian Fluid, Shikhar M. Dwivedi Aug 2017

Simulation Of Driven Elastic Spheres In A Newtonian Fluid, Shikhar M. Dwivedi

Electronic Thesis and Dissertation Repository

Simulations help us test various restrictions/assumptions placed on physical systems that would otherwise be difficult to efficiently explore experimentally. For example, the Scallop Theorem, first stated in 1977, places limitations on the propulsion mechanisms available to microscopic objects in fluids. In particular, the theorem states that when the viscous forces in a fluid dominate the inertial forces associated with a physical body, such a physical body cannot generate propulsion by means of reciprocal motion. The focus of this thesis is to firstly, explore an adaptive Multiple-timestep(MTS) scheme for faster molecular dynamics(MD) simulations, and secondly, use hybrid MD-LBM(Lattice-Boltzman Method) to test …


Dynamics Of Discs In A Nematic Liquid Crystal, Alena Antipova May 2016

Dynamics Of Discs In A Nematic Liquid Crystal, Alena Antipova

Electronic Thesis and Dissertation Repository

In this thesis, a new way of simulating a two-way coupling between a liquid crystal and an immersed object is proposed. It can be used for objects of various geometries and can be expanded to be used for an object of any geometry. Additionally, a simple yet effective model was suggested for calculations of transmitted light through a nematic liquid crystal sample. This model allowed us to clarify the behavior of a ferromagnetic disc in a nematic liquid crystal observed in experiments and incorrectly interpreted at that time.

Our simulations have demonstrated the following: in the absence of external forces …


Secondary Electrohydrodynamic Flow Generated By Corona And Dielectric Barrier Discharges, Mohammadreza Ghazanchaei Sep 2015

Secondary Electrohydrodynamic Flow Generated By Corona And Dielectric Barrier Discharges, Mohammadreza Ghazanchaei

Electronic Thesis and Dissertation Repository

One of the main goals of applied electrostatics engineering is to discover new perspectives in a wide range of research areas. Controlling the fluid media through electrostatic forces has brought new important scientific and industrial applications. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in the field of fluid dynamics. Although numerous EHD applications have been explored and extensively studied so far, most of the works are either experimental studies, which are not capable to explain the in depth physics of the phenomena, or detailed analytical studies, which are not time effective. The focus of this study is …


A Molecular Simulation Study On Micelle Fragmentation And Wetting In Nano-Confined Channels, Mona Habibi Jan 2014

A Molecular Simulation Study On Micelle Fragmentation And Wetting In Nano-Confined Channels, Mona Habibi

Electronic Thesis and Dissertation Repository

We performed coarse-grained molecular-dynamics (MD) simulations to study the structural and dynamical properties of surfactant micelles in equilibrium and under Poiseuille-like flow in a nano-confined geometry. We used the MARTINI force-field to model the interactions between water molecules, counter-ions, and sodium dodecyl sulfate (SDS) surfactants. SDS surfactant was chosen as the standard model because of its potential application in drug delivery systems. First, we focused on the self-assembly of SDS in equilibrium. To form stable spherical mi- celles, we ran simulations in the isothermal-isobaric ensemble (NPT) on a system of free SDS surfactants, counter-ions and water molecules. We studied the …


Hybrid Lattice Boltzmann - Molecular Dynamics Simulations With Both Simple And Complex Fluids, Frances E. Mackay Apr 2013

Hybrid Lattice Boltzmann - Molecular Dynamics Simulations With Both Simple And Complex Fluids, Frances E. Mackay

Electronic Thesis and Dissertation Repository

The behaviour and properties of colloidal suspensions strongly depend on the interactions arising between the immersed colloidal particles and the solvent. However, modelling such interactions is not at all straightforward; the larger time and length scales experienced by the colloidal particles compared to the solvent molecules makes all-atom molecular dynamics (MD) simulations of such systems completely impractical. Therefore a coarse-grained representation of the fluid is required, along with a method to couple this fluid to the colloidal particles.

In the first part of this thesis, we propose a new method for coupling both point and composite MD particles to an …


Molecular Dynamics Studies Of Water Flow In Carbon Nanotubes, Alexander D. Marshall Aug 2012

Molecular Dynamics Studies Of Water Flow In Carbon Nanotubes, Alexander D. Marshall

Electronic Thesis and Dissertation Repository

We present classical molecular dynamics (MD) simulations providing insight into the behaviour of water. We focus on confined water, the properties of which are often significantly different from the properties of bulk water.

First, we performed several simulations investigating the handling of long-range interactions in GROMACS [1], a MD simulation package. Selection of simulation protocols such as handling of long-range interactions is often overlooked, sometimes to the significant detriment of the final result [2, 3, 4]. Ensuring that the chosen simulation protocols are appropriate is a critical step in computer simulation.

Second, we performed MD simulations where water flowed between …


Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian Aug 2012

Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian

Electronic Thesis and Dissertation Repository

In this thesis, a computational framework for patient-specific preoperative planning of Robotics-Assisted Minimally Invasive Cardiac Surgery (RAMICS) is developed. It is expected that preoperative planning of RAMICS will improve the rate of success by considering robot kinematics, patient-specific thoracic anatomy, and procedure-specific intraoperative conditions. Given the significant anatomical features localized in the preoperative computed tomography images of a patient's thorax, port locations and robot orientations (with respect to the patient's body coordinate frame) are determined to optimize characteristics such as dexterity, reachability, tool approach angles and maneuverability. In this thesis, two approaches for preoperative planning of RAMICS are proposed that …


Phase Field Crystal Approach To The Solidification Of Ferromagnetic Materials, Niloufar Faghihi Jun 2012

Phase Field Crystal Approach To The Solidification Of Ferromagnetic Materials, Niloufar Faghihi

Electronic Thesis and Dissertation Repository

The dependence of the magnetic hardness on the microstructure of magnetic solids is investigated, using a field theoretical approach, called the Magnetic Phase Field Crystal model. We constructed the free energy by extending the Phase Field Crystal (PFC) formalism and including terms to incorporate the ferromagnetic phase transition and the anisotropic magneto-elastic effects, i.e., the magnetostriction effect. Using this model we performed both analytical calculations and numerical simulations to study the coupling between the magnetic and elastic properties in ferromagnetic solids. By analytically minimizing the free energy, we calculated the equilibrium phases of the system to be liquid, non-magnetic …