Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Physics

Renormalized Stress-Energy Tensor For Scalar Fields In Hartle-Hawking, Boulware, And Unruh States In The Reissner-Nordström Spacetime, Julio Arrechea, Cormac Breen, Adrian Ottewill, Peter Taylor Dec 2023

Renormalized Stress-Energy Tensor For Scalar Fields In Hartle-Hawking, Boulware, And Unruh States In The Reissner-Nordström Spacetime, Julio Arrechea, Cormac Breen, Adrian Ottewill, Peter Taylor

Articles

In this paper, we consider a quantum scalar field propagating on the Reissner-Nordström black hole spacetime. We compute the renormalized stress-energy tensor for the field in the Hartle-Hawking, Boulware and Unruh states. When the field is in the Hartle-Hawking state, we renormalize using the recently developed “extended coordinate” prescription. This method, which relies on Euclidean techniques, is very fast and accurate. Once, we have renormalized in the Hartle-Hawking state, we compute the stress-energy tensor in the Boulware and Unruh states by leveraging the fact that the difference between stress-energy tensors in different quantum states is already finite. We consider a …


The Lagrangian Formulation For Wave Motion With A Shear Current And Surface Tension, Conor Curtin, Rossen Ivanov Jan 2023

The Lagrangian Formulation For Wave Motion With A Shear Current And Surface Tension, Conor Curtin, Rossen Ivanov

Articles

The Lagrangian formulation for the irrotational wave motion is straightforward and follows from a Lagrangian functional which is the difference between the kinetic and the potential energy of the system. In the case of fluid with constant vorticity, which arises for example when a shear current is present, the separation of the energy into kinetic and potential is not at all obvious and neither is the Lagrangian formulation of the problem. Nevertheless, we use the known Hamiltonian formulation of the problem in this case to obtain the Lagrangian density function, and utilising the Euler-Lagrange equations we proceed to derive some …


A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill Sep 2022

A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill

Articles

In this paper, we describe an extremely efficient method for computing the renormalized stress-energy tensor of a quantum scalar field in spherically symmetric black hole spacetimes. The method applies to a scalar field with arbitrary field parameters. We demonstrate the utility of the method by computing the renormalized stress-energy tensor for a scalar field in the Schwarzschild black hole spacetime, applying our results to discuss the null energy condition and the semiclassical backreaction.


Modelling Spherical Aberration Detection In An Analog Holographic Wavefront Sensor, Emma Branigan, Suzanne Martin, Matthew Sheehan, Kevin Murphy Jul 2022

Modelling Spherical Aberration Detection In An Analog Holographic Wavefront Sensor, Emma Branigan, Suzanne Martin, Matthew Sheehan, Kevin Murphy

Conference Papers

The analog holographic wavefront sensor (AHWFS) is a simple and robust solution to wavefront sensing in turbulent environments. Here, the ability of a photopolymer based AHWFS to detect refractively generated spherical aberration is modelled and verified.


On The Coriolis Effect For Internal Ocean Waves, Rossen Ivanov Jan 2022

On The Coriolis Effect For Internal Ocean Waves, Rossen Ivanov

Conference papers

A derivation of the Ostrovsky equation for internal waves with methods of the Hamiltonian water wave dynamics is presented. The internal wave formed at a pycnocline or thermocline in the ocean is influenced by the Coriolis force of the Earth's rotation. The Ostrovsky equation arises in the long waves and small amplitude approximation and for certain geophysical scales of the physical variables.


Semiclassical Backreaction On Asymptotically Anti–De Sitter Black Holes, Peter Taylor, Cormac Breen Jan 2021

Semiclassical Backreaction On Asymptotically Anti–De Sitter Black Holes, Peter Taylor, Cormac Breen

Articles

We consider a quantum scalar field on the classical background of an asymptotically anti–de Sitter black hole and the backreaction the field’s stress-energy tensor induces on the black hole geometry. The backreaction is computed by solving the reduced-order semiclassical Einstein field equations sourced by simple analytical approximations for the renormalized expectation value of the scalar field stress-energy tensor. When the field is massless and conformally coupled, we adopt Page’s approximation to the renormalized stress-energy tensor, while for massive fields we adopt a modified version of the DeWitt-Schwinger approximation. The latter approximation must be modified so that it possesses the correct …


Five-Wave Resonances In Deep Water Gravity Waves: Integrability, Numerical Simulations And Experiments, Dan Lucas, Marc Perlin, Dian-Yong Liu, Shane Walsh, Rossen Ivanov, Miguel D. Bustamante Jan 2021

Five-Wave Resonances In Deep Water Gravity Waves: Integrability, Numerical Simulations And Experiments, Dan Lucas, Marc Perlin, Dian-Yong Liu, Shane Walsh, Rossen Ivanov, Miguel D. Bustamante

Articles

In this work we consider the problem of finding the simplest arrangement of resonant deep water gravity waves in one-dimensional propagation, from three perspectives: Theoretical, numerical and experimental. Theoretically this requires using a normal-form Hamiltonian that focuses on 5-wave resonances. The simplest arrangement is based on a triad of wave vectors K1 + K2 = K3 (satisfying specific ratios) along with their negatives, corresponding to a scenario of encountering wave packets, amenable to experiments and numerical simulations. The normal-form equations for these encountering waves in resonance are shown to be non-integrable, but they admit an integrable reduction …


Swirling Fluid Flow In Flexible, Expandable Elastic Tubes: Variational Approach, Reductions And Integrability, Rossen Ivanov, Vakhtang Putkaradze Jan 2020

Swirling Fluid Flow In Flexible, Expandable Elastic Tubes: Variational Approach, Reductions And Integrability, Rossen Ivanov, Vakhtang Putkaradze

Articles

Many engineering and physiological applications deal with situations when a fluid is moving in flexible tubes with elastic walls. In real-life applications like blood flow, a swirl in the fluid often plays an important role, presenting an additional complexity not described by previous theoretical models. We present a theory for the dynamics of the interaction between elastic tubes and swirling fluid flow. The equations are derived using a variational principle, with the incompressibility constraint of the fluid giving rise to a pressure-like term. In order to connect this work with the previous literature, we consider the case of inextensible and …


On The Intermediate Long Wave Propagation For Internal Waves In The Presence Of Currents, Joseph Cullen, Rossen Ivanov Jan 2020

On The Intermediate Long Wave Propagation For Internal Waves In The Presence Of Currents, Joseph Cullen, Rossen Ivanov

Articles

A model for the wave motion of an internal wave in the presence of current in the case of intermediate long wave approximation is studied. The lower layer is considerably deeper, with a higher density than the upper layer. The flat surface approximation is assumed. The fluids are incompressible and inviscid. The model equations are obtained from the Hamiltonian formulation of the dynamics in the presence of a depth-varying current. It is shown that an appropriate scaling leads to the integrable Intermediate Long Wave Equation (ILWE). Two limits of the ILWE leading to the integrable Benjamin-Ono and KdV equations are …


Surface Waves Over Currents And Uneven Bottom, Alan Compelli, Rossen Ivanov, Calin I. Martin, Michail D. Todorov Jan 2019

Surface Waves Over Currents And Uneven Bottom, Alan Compelli, Rossen Ivanov, Calin I. Martin, Michail D. Todorov

Articles

The propagation of surface water waves interacting with a current and an uneven bottom is studied. Such a situation is typical for ocean waves where the winds generate currents in the top layer of the ocean. The role of the bottom topography is taken into account since it also influences the local wave and current patterns. Specific scaling of the variables is selected which leads to approximations of Boussinesq and KdV types. The arising KdV equation with variable coefficients, dependent on the bottom topography, is studied numerically when the initial condition is in the form of the one soliton solution …


Equatorial Wave–Current Interactions, Adrian Constantin, Rossen Ivanov Jan 2019

Equatorial Wave–Current Interactions, Adrian Constantin, Rossen Ivanov

Articles

We study the nonlinear equations of motion for equatorial wave–current interactions in the physically realistic setting of azimuthal two-dimensional inviscid flows with piecewise constant vorticity in a two-layer fluid with a flat bed and a free surface. We derive a Hamiltonian formulation for the nonlinear governing equations that is adequate for structure-preserving perturbations, at the linear and at the nonlinear level. Linear theory reveals some important features of the dynamics, highlighting differences between the short- and long-wave regimes. The fact that ocean energy is concentrated in the long-wave propagation modes motivates the pursuit of in-depth nonlinear analysis in the long-wave …


Fluid-Dynamic Models Of Geophysical Waves, Alan Compelli Jan 2018

Fluid-Dynamic Models Of Geophysical Waves, Alan Compelli

Doctoral

Geophysical waves are waves that are found naturally in the Earth's atmosphere and oceans. Internal waves, that is waves that act as an interface between uids of dierent density, are examples of geophysical waves. A uid system with a at bottom, at surface and internal wave is initially considered. The system has a depth-dependent current which mimics a typical ocean set-up and, as it is based on the surface of the rotating Earth, incorporates Coriolis forces. Using well established uid dynamic techniques, the total energy is calculated and used to determine the dynamics of the system using a procedure called …


Theoretical Modeling Of The Effect Of Polymer Chain Immobilization Rates On Holographic Recording In Photopolymers, Dana Mackey, Paul O'Reilly, Izabela Naydenova Apr 2016

Theoretical Modeling Of The Effect Of Polymer Chain Immobilization Rates On Holographic Recording In Photopolymers, Dana Mackey, Paul O'Reilly, Izabela Naydenova

Articles

This paper introduces an improved mathematical model for holographic grating formation in an acrylamide-based photopolymer, which consists of partial differential equations derived from physical laws. The model is based on the two-way diffusion theory of \cite{izabela}, which assumes short polymer chains are free to diffuse, and generalizes a similar model presented in \cite{josab} by introducing an immobilization rate governed by chain growth and cross-linking. Numerical simulations were carried out in order to investigate the behaviour of the photopolymer system for short and long exposures, with particular emphasis on the effect of recording parameters (such as illumination frequency and intensity), as …


The Dynamics Of Flat Surface Internal Geophysical Waves With Currents, Alan Compelli, Rossen Ivanov Jan 2016

The Dynamics Of Flat Surface Internal Geophysical Waves With Currents, Alan Compelli, Rossen Ivanov

Articles

A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behavior is examined and compared to that of other known models. The linearised …


A Soft Condensed Matter Approach Towards Mathematical Modelling Of Mass Transport And Swelling In Food Grains, Michael Chapwanya, N. Misra Aug 2014

A Soft Condensed Matter Approach Towards Mathematical Modelling Of Mass Transport And Swelling In Food Grains, Michael Chapwanya, N. Misra

Articles

Soft condensed matter (SCM) physics has recently gained importance for a large class of engineering materials. The treatment of food materials from a soft matter perspective, however, is only at the surface and is gaining importance for understanding the complex phenomena and structure of foods. In this work, we present a theoretical treatment of navy beans from a SCM perspective to describe the hydration kinetics. We solve the transport equations within a porous matrix and employ the Flory–Huggin’s equation for polymer–solvent mixture to balance the osmotic pressure. The swelling of the legume seed is modelled as a moving boundary with …


One-Dimensional Weakly Nonlinear Model Equations For Rossby Waves, David Henry, Rossen Ivanov Aug 2014

One-Dimensional Weakly Nonlinear Model Equations For Rossby Waves, David Henry, Rossen Ivanov

Articles

In this study we explore several possibilities for modelling weakly nonlinear Rossby waves in fluid of constant depth, which propagate predominantly in one direction. The model equations obtained include the BBM equation, as well as the integrable KdV and Degasperis-Procesi equations.


Integrability, Recursion Operators And Soliton Interactions, Boyka Aneva, Georgi Grahovski, Rossen Ivanov, Dimitar Mladenov Jan 2014

Integrability, Recursion Operators And Soliton Interactions, Boyka Aneva, Georgi Grahovski, Rossen Ivanov, Dimitar Mladenov

Book chapter/book

This volume contains selected papers based on the talks,presentedat the Conference Integrability, Recursion Operators and Soliton Interactions, held in Sofia, Bulgaria (29-31 August 2012) at the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. Included are also invited papers presenting new research developments in the thematic area. The Conference was dedicated to the 65-th birthday of our esteemed colleague and friend Vladimir Gerdjikov. The event brought together more than 30 scientists, from 6 European countries to celebrate Vladimir's scientific achievements. All participants enjoyed a variety of excellent talks in a friendly and stimulating atmosphere. …


Modelling Two-Dimensional Photopolymer Patterns Produced With Multiple-Beam Holography, Dana Mackey, Tsvetanka Babeva, Izabela Naydenova, Vincent Toal May 2012

Modelling Two-Dimensional Photopolymer Patterns Produced With Multiple-Beam Holography, Dana Mackey, Tsvetanka Babeva, Izabela Naydenova, Vincent Toal

Conference papers

Periodic structures referred to as photonic crystals attract considerable interest due to their potential applications in areas such as nanotechnology, photonics, plasmonics, etc. Among various techniques used for their fabrication, multiple-beam holography is a promising method enabling defect-free structures to be produced in a single step over large areas.

In this paper we use a mathematical model describing photopolymerisation to simulate two-dimensional structures produced by the interference pattern of three noncoplanar beams. The holographic recording of different lattices is studied by variation of certain parameters such as beam wave vectors, time and intensity of illumination.


Stiefel And Grassmann Manifolds In Quantum Chemistry, Eduardo Chiumiento, Michael Melgaard Apr 2012

Stiefel And Grassmann Manifolds In Quantum Chemistry, Eduardo Chiumiento, Michael Melgaard

Articles

We establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slatertype variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove thatthey are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds. These geometric properties underpin state-of-the-art results on existence of solutions to Hartree-Fock type equations.


Converging Flow Between Coaxial Cones, O. Hall, A. D. Gilbert, C. P. Hills Jan 2009

Converging Flow Between Coaxial Cones, O. Hall, A. D. Gilbert, C. P. Hills

Articles

Fluid flow governed by the Navier-Stokes equation is considered in a domain bounded by two cones with the same axis. In the first, 'non-parallel' case, the two cones have the same apex and different angles θ = α and β in spherical polar coordinates (r, θ, φ). In the second, 'parallel' case, the two cones have the same opening angle α, parallel walls separated by a gap h and apices separated by a distance h/sinα. Flows are driven by a source Q at the origin, the apex of the lower cone in the parallel case. The Stokes solution for the …


Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2009

Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

We study the fully three-dimensional Stokes flow within a geometry consisting of two infinite cones with coincident apices. The Stokes approximation is valid near the apex and we consider the dominant flow features as it is approached. The cones are assumed to be stationary and the flow to be driven by an arbitrary far-field disturbance. We express the flow quantities in terms of eigenfunction expansions and allow for the first time for nonaxisymmetric flow regimes through an azimuthal wave number. The eigenvalue problem is solved numerically for successive wave numbers. Both real and complex sequences of eigenvalues are found, their …


Nearly-Hamiltonian Structure For Water Waves With Constant Vorticity, Adrian Constantin, Rossen Ivanov, Emil Prodanov Jan 2008

Nearly-Hamiltonian Structure For Water Waves With Constant Vorticity, Adrian Constantin, Rossen Ivanov, Emil Prodanov

Articles

We show that the governing equations for two-dimensional gravity water waves with constant non-zero vorticity have a nearly-Hamiltonian structure, which becomes Hamiltonian for steady waves.


Diffusion And Fractional Diffusion Based Models For Multiple Light Scattering And Image Analysis, Jonathan Blackledge Jan 2007

Diffusion And Fractional Diffusion Based Models For Multiple Light Scattering And Image Analysis, Jonathan Blackledge

Articles

This paper considers a fractional light diffusion model as an approach to characterizing the case when intermediate scattering processes are present, i.e. the scattering regime is neither strong nor weak. In order to introduce the basis for this approach, we revisit the elements of formal scattering theory and the classical diffusion problem in terms of solutions to the inhomogeneous wave and diffusion equations respectively. We then address the significance of these equations in terms of a random walk model for multiple scattering. This leads to the proposition of a fractional diffusion equation for modelling intermediate strength scattering that is based …


Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2007

Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

This paper considers the low-Reynolds-number flow of an incompressible fluid contained in the gap between two coaxial cones with coincident apices and bounded by a spherical lid. The two cones and the lid are allowed to rotate independently about their common axis, generating a swirling motion. The swirl induces a secondary, meridional circulation through inertial effects. For specific configurations complex eigenmodes representing an infinite sequence of eddies, analogous to those found in two-dimensional corner flows and some three-dimensional geometries, form a component of this secondary circulation. When the cones rotate these eigenmodes, arising from the geometry, compete with the forced …


The Asymptotics Of Neutral Curve Crossing In Taylor–Dean Flow, C. P. Hills, A. P. Bassom Jan 2006

The Asymptotics Of Neutral Curve Crossing In Taylor–Dean Flow, C. P. Hills, A. P. Bassom

Articles

The fluid flow between a pair of coaxial circular cylinders generated by the uniform rotation of the inner cylinder and an azimuthal pressure gradient is susceptible to both Taylor and Dean type instabilities. The flow can be characterised by two parameters: a measure of the relative magnitude of the rotation and pressure effects and a non-dimensional Taylor number. This work considers the small gap, large wavenumber limit for linear perturbations when the onset of the Taylor and Dean instabilities is concurrent. A consistent, matched asymptotic solution is found across the whole annular domain and identifies five regions of interest: two …


The Simultaneous Onset And Interaction Of Taylor And Dean Instabilities In A Couette Geometry, C. P. Hills, A. P. Bassom Jan 2005

The Simultaneous Onset And Interaction Of Taylor And Dean Instabilities In A Couette Geometry, C. P. Hills, A. P. Bassom

Articles

The fluid flow between a pair of coaxial circular cylinders generated by the uniform rotation of the inner cylinder and an azimuthal pressure gradient is susceptible to both Taylor and Dean type instabilities. The flow can be characterised by two parameters: a measure of the relative magnitude of the rotation and pressure effects and a non-dimensional Taylor number. Neutral curves associated with each instability can be constructed but it has been suggested that these curves do not cross but rather posses `kinks'. Our work is based in the small gap, large wavenumber limit and considers the simultaneous onset of Taylor …


Reply To "Comment On ‘Atomic Spectral Line Free-Parameter Deconvolution Procedure’”, Vladimir Milosavljevic, Goran Poparic May 2003

Reply To "Comment On ‘Atomic Spectral Line Free-Parameter Deconvolution Procedure’”, Vladimir Milosavljevic, Goran Poparic

Articles

We do not agree with the authors of the preceding Comment [X. Nikolic, X. Ojurovic, and X. Mijatovic, Phys. Rev. E, 67, 058401, 2003]. Our numerical procedure for the deconvolution of the theoretical asymmetric convolution integral of a Gaussian and a plasma broadened spectral line profile jA,R(λ) for spectral lines enables the determination of all broadening parameters. All broadening parameters can be determined directly from the recorded line profile of a single line, with minimal assumptions or prior knowledge. Additional experimental diagnostics are not required.


Flow Patterns In A Two-Roll Mill, Christopher Hills Jan 2002

Flow Patterns In A Two-Roll Mill, Christopher Hills

Articles

The two-dimensional flow of a Newtonian fluid in a rectangular box that contains two disjoint, independently-rotating, circular boundaries is studied. The flow field for this two-roll mill is determined numerically using a finite-difference scheme over a Cartesian grid with variable horizontal and vertical spacing to accommodate satisfactorily the circular boundaries. To make the streamfunction numerically determinate we insist that the pressure field is everywhere single-valued. The physical character, streamline topology and transitions of the flow are discussed for a range of geometries, rotation rates and Reynolds numbers in the underlying seven-parameter space. An account of a preliminary experimental study of …


Eddy Structures Induced Within A Wedge By A Honing Circular Arc, C. P. Hills Jan 2001

Eddy Structures Induced Within A Wedge By A Honing Circular Arc, C. P. Hills

Articles

In this paper we outline an expeditious numerical procedure to calculate the Stokes flow in a corner due to the rotation of a scraping circular boundary. The method is also applicable to other wedge geometries. We employ a collocation technique utilising a basis of eddy (similarity) functions introduced by Moffatt (1964) that allows us to satisfy automatically the governing equations for the streamfunction and all the boundary conditions on the surface of the wedge. The circular honing problem thereby becomes one-dimensional requiring only the satisfaction of conditions on the circular boundary. The advantage of using the Moffatt eddy functions as …


Eddies Induced In Cylindrical Containers By A Rotating End Wall, Christopher Hills Jan 2001

Eddies Induced In Cylindrical Containers By A Rotating End Wall, Christopher Hills

Articles

The flow generated in a viscous liquid contained in a cylindrical geometry by a rotating end wall is considered. Recent numerical and experimental work has established several distinct phases of the motion when fluid inertia plays a significant role. The current paper, however, establishes the nature of the flow in the thus far neglected low Reynolds number regime. Explicitly, by employing biorthogonality relations appropriate to the current geometry, it is shown that a sequence of exponentially decaying eddies extends outward from the rotating end wall. The cellular structure is a manifestation of the dominance of complex eigensolutions to the homogeneous …