Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Practical Implementation Of The Immersed Interface Method With Triangular Meshes For 3d Rigid Solids In A Fluid Flow, Norah Hakami Apr 2023

Practical Implementation Of The Immersed Interface Method With Triangular Meshes For 3d Rigid Solids In A Fluid Flow, Norah Hakami

Mathematics Theses and Dissertations

When employing the immersed interface method (IIM) to simulate a fluid flow around a moving rigid object, the immersed object can be replaced by a virtual fluid enclosed by singular forces on the interface between the real and virtual fluids. These forces represent the impact of the rigid motion on the fluid flow and cause jump discontinuities across the interface in the whole flow field. Then, the IIM resolves the fluid flow on a fixed computational domain by directly incorporating the jump conditions across the interface into numerical schemes. Previous development of the method is limited to simple smooth boundaries. …


Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia Sep 2022

Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia

SMU Data Science Review

In this paper, machine learning techniques are used to reconstruct particle collision pathways. CERN (Conseil européen pour la recherche nucléaire) uses a massive underground particle collider, called the Large Hadron Collider or LHC, to produce particle collisions at extremely high speeds. There are several layers of detectors in the collider that track the pathways of particles as they collide. The data produced from collisions contains an extraneous amount of background noise, i.e., decays from known particle collisions produce fake signal. Particularly, in the first layer of the detector, the pixel tracker, there is an overwhelming amount of background noise that …


Modeling Fluid Phenomena In The Context Of The Constrained Vapor Bubble System, James Barrett Dec 2020

Modeling Fluid Phenomena In The Context Of The Constrained Vapor Bubble System, James Barrett

Mathematics Theses and Dissertations

This thesis focuses on the fluid phenomena observed within what is known as the constrained vapor bubble system. The constrained vapor bubble system is a closed system consisting of a quartz cuvette partially filled with liquid and used as a coolant device. Heat is applied to the heater end which causes the liquid to evaporate and condense on the cooled end of the cuvette. Liquid travels back to the heated end via capillary flow in the corners. A pure vapor bubble is formed in the center of the cuvette giving rise to the name of the experiment. The constrained vapor …


Direct Ellipsoidal Fitting Of Discrete Multi-Dimensional Data, Madeline Hamilton Feb 2020

Direct Ellipsoidal Fitting Of Discrete Multi-Dimensional Data, Madeline Hamilton

SMU Journal of Undergraduate Research

Multi-dimensional distributions of discrete data that resemble ellipsoids arise in numerous areas of science, statistics, and computational geometry. We describe a complete algebraic algorithm to determine the quadratic form specifying the equation of ellipsoid for the boundary of such multi-dimensional discrete distribution. In this approach, the equation of an ellipsoid is reconstructed using a set of matrix equations from low-dimensional projections of the input data. We provide a Mathematica program realizing the full implementation of the ellipsoid reconstruction algorithm in an arbitrary number of dimensions. To demonstrate its many potential uses, the direct reconstruction method is applied to quasi-Gaussian statistical …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson Apr 2018

Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson

Mathematics Theses and Dissertations

Irradiation of semiconductor surfaces often leads to the spontaneous formation of rippled structures at certain irradiation angles. However, at high enough energies, these structures are observed to vanish for all angles, despite the absence of any identified, universally-stabilizing physical mechanisms in operation. Here, we examine the effect on pattern formation of radiation-induced swelling, which has been excluded from prior treatments of stress in irradiated films. After developing a suitable continuum model, we perform a linear stability analysis to determine its effect on stability. Under appropriate simplifying assumptions, we find swelling indeed to be stabilizing at wavenumbers typical of experimental observations. …


Preconditioning Visco-Resistive Mhd For Tokamak Plasmas, Daniel R. Reynolds, Ravi Samtaney, Hilari C. Tiedeman Mar 2012

Preconditioning Visco-Resistive Mhd For Tokamak Plasmas, Daniel R. Reynolds, Ravi Samtaney, Hilari C. Tiedeman

Mathematics Research

No abstract provided.


Heterogeneous Multiscale Modeling Of Advection-Diffusion Problems, David J. Gardner, Daniel R. Reynolds Feb 2012

Heterogeneous Multiscale Modeling Of Advection-Diffusion Problems, David J. Gardner, Daniel R. Reynolds

Mathematics Research

No abstract provided.