Open Access. Powered by Scholars. Published by Universities.®

Number Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Number Theory

Solubility Of Additive Forms Over Local Fields, Drew Duncan Jan 2021

Solubility Of Additive Forms Over Local Fields, Drew Duncan

Theses and Dissertations--Mathematics

Michael Knapp, in a previous work, conjectured that every additive sextic form over $\mathbb{Q}_2(\sqrt{-1})$ and $\mathbb{Q}_2(\sqrt{-5})$ in seven variables has a nontrivial zero. In this dissertation, I show that this conjecture is true, establishing that $$\Gamma^*(6, \mathbb{Q}_2(\sqrt{-1})) = \Gamma^*(6, \mathbb{Q}_2(\sqrt{-5})) = 7.$$ I then determine the minimal number of variables $\Gamma^*(d, K)$ which guarantees a nontrivial solution for every additive form of degree $d=2m$, $m$ odd, $m \ge 3$ over the six ramified quadratic extensions of $\mathbb{Q}_2$. We prove that if $$K \in \{\mathbb{Q}_2(\sqrt{2}), \mathbb{Q}_2(\sqrt{10}), \mathbb{Q}_2(\sqrt{-2}), \mathbb{Q}_2(\sqrt{-10})\},$$ then $$\Gamma^*(d,K) = \frac{3}{2}d,$$ and if $$K \in \{\mathbb{Q}_2(\sqrt{-1}), \mathbb{Q}_2(\sqrt{-5})\},$$ then $$\Gamma^*(d,K) = …


The Plus-Minus Davenport Constant Of Finite Abelian Groups, Darleen S. Perez-Lavin Jan 2021

The Plus-Minus Davenport Constant Of Finite Abelian Groups, Darleen S. Perez-Lavin

Theses and Dissertations--Mathematics

Let G be a finite abelian group, written additively. The Davenport constant, D(G), is the smallest positive number s such that any subset of the group G, with cardinality at least s, contains a non-trivial zero-subsum. We focus on a variation of the Davenport constant where we allow addition and subtraction in the non-trivial zero-subsum. This constant is called the plus-minus Davenport constant, D±(G). In the early 2000’s, Marchan, Ordaz, and Schmid proved that if the cardinality of G is less than or equal to 100, then the D±(G) …


The Smallest Solution Of An Isotropic Quadratic Form, Deborah H. Blevins Jan 2021

The Smallest Solution Of An Isotropic Quadratic Form, Deborah H. Blevins

Theses and Dissertations--Mathematics

An isotropic quadratic form f(x1,...,xn) = ∑ ni=1nj=1 fijxixj defined on a Z- lattice has a smallest solution, where the size of the solution is measured using the infinity norm (∥ ∥), the l1 norm (∥ ∥1), or the Euclidean norm (∥ ∥2). Much work has been done to find the least upper bound and greatest lower bound on the smallest solution, beginning with Cassels in the mid-1950’s. Defining F := (f11,...,f …


Simultaneous Zeros Of A System Of Two Quadratic Forms, Nandita Sahajpal Jan 2020

Simultaneous Zeros Of A System Of Two Quadratic Forms, Nandita Sahajpal

Theses and Dissertations--Mathematics

In this dissertation we investigate the existence of a nontrivial solution to a system of two quadratic forms over local fields and global fields. We specifically study a system of two quadratic forms over an arbitrary number field. The questions that are of particular interest are:

  1. How many variables are necessary to guarantee a nontrivial zero to a system of two quadratic forms over a global field or a local field? In other words, what is the u-invariant of a pair of quadratic forms over any global or local field?
  2. What is the relation between u-invariants of a …


Solutions To Systems Of Equations Over Finite Fields, Rachel Petrik Jan 2020

Solutions To Systems Of Equations Over Finite Fields, Rachel Petrik

Theses and Dissertations--Mathematics

This dissertation investigates the existence of solutions to equations over finite fields with an emphasis on diagonal equations. In particular:

  1. Given a system of equations, how many solutions are there?
  2. In the case of a system of diagonal forms, when does a nontrivial solution exist?

Many results are known that address (1) and (2), such as the classical Chevalley--Warning theorems. With respect to (1), we have improved a recent result of D.R. Heath--Brown, which provides a lower bound on the total number of solutions to a system of polynomials equations. Furthermore, we have demonstrated that several of our lower bounds …


Bounding The Number Of Compatible Simplices In Higher Dimensional Tournaments, Karthik Chandrasekhar Jan 2019

Bounding The Number Of Compatible Simplices In Higher Dimensional Tournaments, Karthik Chandrasekhar

Theses and Dissertations--Mathematics

A tournament graph G is a vertex set V of size n, together with a directed edge set EV × V such that (i, j) ∈ E if and only if (j, i) ∉ E for all distinct i, jV and (i, i) ∉ E for all iV. We explore the following generalization: For a fixed k we orient every k-subset of V by assigning it an orientation. That is, every facet of the (k − 1)-skeleton of the ( …


On P-Adic Fields And P-Groups, Luis A. Sordo Vieira Jan 2017

On P-Adic Fields And P-Groups, Luis A. Sordo Vieira

Theses and Dissertations--Mathematics

The dissertation is divided into two parts. The first part mainly treats a conjecture of Emil Artin from the 1930s. Namely, if f = a_1x_1^d + a_2x_2^d +...+ a_{d^2+1}x^d where the coefficients a_i lie in a finite unramified extension of a rational p-adic field, where p is an odd prime, then f is isotropic. We also deal with systems of quadratic forms over finite fields and study the isotropicity of the system relative to the number of variables. We also study a variant of the classical Davenport constant of finite abelian groups and relate it to the isotropicity of diagonal …


Kronecker's Theory Of Binary Bilinear Forms With Applications To Representations Of Integers As Sums Of Three Squares, Jonathan A. Constable Jan 2016

Kronecker's Theory Of Binary Bilinear Forms With Applications To Representations Of Integers As Sums Of Three Squares, Jonathan A. Constable

Theses and Dissertations--Mathematics

In 1883 Leopold Kronecker published a paper containing “a few explanatory remarks” to an earlier paper of his from 1866. His work loosely connected the theory of integral binary bilinear forms to the theory of integral binary quadratic forms. In this dissertation we discover the statements within Kronecker's paper and offer detailed arithmetic proofs. We begin by developing the theory of binary bilinear forms and their automorphs, providing a classification of integral binary bilinear forms up to equivalence, proper equivalence and complete equivalence.

In the second chapter we introduce the class number, proper class number and complete class number as …