Open Access. Powered by Scholars. Published by Universities.®

Dynamical Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

Non-linear Dynamics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 80

Full-Text Articles in Dynamical Systems

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen Jan 2024

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen

Theses and Dissertations (Comprehensive)

The complex nature of the human brain, with its intricate organic structure and multiscale spatio-temporal characteristics ranging from synapses to the entire brain, presents a major obstacle in brain modelling. Capturing this complexity poses a significant challenge for researchers. The complex interplay of coupled multiphysics and biochemical activities within this intricate system shapes the brain's capacity, functioning within a structure-function relationship that necessitates a specific mathematical framework. Advanced mathematical modelling approaches that incorporate the coupling of brain networks and the analysis of dynamic processes are essential for advancing therapeutic strategies aimed at treating neurodegenerative diseases (NDDs), which afflict millions of …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost Dec 2023

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Thermodynamic Laws Of Billiards-Like Microscopic Heat Conduction Models, Ling-Chen Bu Nov 2023

Thermodynamic Laws Of Billiards-Like Microscopic Heat Conduction Models, Ling-Chen Bu

Doctoral Dissertations

In this thesis, we study the mathematical model of one-dimensional microscopic heat conduction of gas particles, applying both both analytical and numerical approaches. The macroscopic law of heat conduction is the renowned Fourier’s law J = −k∇T, where J is the local heat flux density, T(x, t) is the temperature gradient, and k is the thermal conductivity coefficient that characterizes the material’s ability to conduct heat. Though Fouriers’s law has been discovered since 1822, the thorough understanding of its microscopic mechanisms remains challenging [3] (2000). We assume that the microscopic model of heat conduction is a hard ball system. The …


Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann Oct 2023

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


Computing Brain Networks With Complex Dynamics, Anca R. Radulescu May 2023

Computing Brain Networks With Complex Dynamics, Anca R. Radulescu

Biology and Medicine Through Mathematics Conference

No abstract provided.


Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin May 2023

Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin

All Dissertations

Inverse problems involve extracting the internal structure of a physical system from noisy measurement data. In many fields, the Bayesian inference is used to address the ill-conditioned nature of the inverse problem by incorporating prior information through an initial distribution. In the nonparametric Bayesian framework, surrogate models such as Gaussian Processes or Deep Neural Networks are used as flexible and effective probabilistic modeling tools to overcome the high-dimensional curse and reduce computational costs. In practical systems and computer models, uncertainties can be addressed through parameter calibration, sensitivity analysis, and uncertainty quantification, leading to improved reliability and robustness of decision and …


On The Spatial Modelling Of Biological Invasions, Tedi Ramaj Dec 2022

On The Spatial Modelling Of Biological Invasions, Tedi Ramaj

Electronic Thesis and Dissertation Repository

We investigate problems of biological spatial invasion through the use of spatial modelling. We begin by examining the spread of an invasive weed plant species through a forest by developing a system of partial differential equations (PDEs) involving an invasive weed and a competing native plant species. We find that extinction of the native plant species may be achieved by increasing the carrying capacity of the forest as well as the competition coefficient between the species. We also find that the boundary conditions exert long-term control on the biomass of the invasive weed and hence should be considered when implementing …


Universality And Synchronization In Complex Quadratic Networks (Cqns), Anca R. Radulescu, Danae Evans May 2022

Universality And Synchronization In Complex Quadratic Networks (Cqns), Anca R. Radulescu, Danae Evans

Biology and Medicine Through Mathematics Conference

No abstract provided.


Role Of Inhibition And Spiking Variability In Ortho- And Retronasal Olfactory Processing, Michelle F. Craft Jan 2022

Role Of Inhibition And Spiking Variability In Ortho- And Retronasal Olfactory Processing, Michelle F. Craft

Theses and Dissertations

Odor perception is the impetus for important animal behaviors, most pertinently for feeding, but also for mating and communication. There are two predominate modes of odor processing: odors pass through the front of nose (ortho) while inhaling and sniffing, or through the rear (retro) during exhalation and while eating and drinking. Despite the importance of olfaction for an animal’s well-being and specifically that ortho and retro naturally occur, it is unknown whether the modality (ortho versus retro) is transmitted to cortical brain regions, which could significantly instruct how odors are processed. Prior imaging studies show different …


Mathematical Model Describing The Behavior Of Biomass, Acidity, And Viscosity As A Function Of Temperature In The Shelf Life Of Yogurt, Manuel Alvarado, Paul A. Valle, Yolocuauhtli Salazar Nov 2021

Mathematical Model Describing The Behavior Of Biomass, Acidity, And Viscosity As A Function Of Temperature In The Shelf Life Of Yogurt, Manuel Alvarado, Paul A. Valle, Yolocuauhtli Salazar

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Dynamic Parameter Estimation From Partial Observations Of The Lorenz System, Eunice Ng Jul 2021

Dynamic Parameter Estimation From Partial Observations Of The Lorenz System, Eunice Ng

Theses and Dissertations

Recent numerical work of Carlson-Hudson-Larios leverages a nudging-based algorithm for data assimilation to asymptotically recover viscosity in the 2D Navier-Stokes equations as partial observations on the velocity are received continuously-in-time. This "on-the-fly" algorithm is studied both analytically and numerically for the Lorenz equations in this thesis.


Entropic Dynamics Of Networks, Felipe Xavier Costa, Pedro Pessoa Mar 2021

Entropic Dynamics Of Networks, Felipe Xavier Costa, Pedro Pessoa

Northeast Journal of Complex Systems (NEJCS)

Here we present the entropic dynamics formalism for networks. That is, a framework for the dynamics of graphs meant to represent a network derived from the principle of maximum entropy and the rate of transition is obtained taking into account the natural information geometry of probability distributions. We apply this framework to the Gibbs distribution of random graphs obtained with constraints on the node connectivity. The information geometry for this graph ensemble is calculated and the dynamical process is obtained as a diffusion equation. We compare the steady state of this dynamics to degree distributions found on real-world networks.


Mathematical Modelling Of Temperature Effects On The Afd Neuron Of Caenorhabditis Elegans, Zachary Mobille, Rosangela Follmann, Epaminondas Rosa Nov 2020

Mathematical Modelling Of Temperature Effects On The Afd Neuron Of Caenorhabditis Elegans, Zachary Mobille, Rosangela Follmann, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Emergence, Mechanics, And Development: How Behavior And Geometry Underlie Cowrie Seashell Form, Michael G. Levy, Michael R. Deweese May 2020

Emergence, Mechanics, And Development: How Behavior And Geometry Underlie Cowrie Seashell Form, Michael G. Levy, Michael R. Deweese

Biology and Medicine Through Mathematics Conference

No abstract provided.


The Long-Run Effects Of Tropical Cyclones On Infant Mortality, Isabel Miranda May 2019

The Long-Run Effects Of Tropical Cyclones On Infant Mortality, Isabel Miranda

Master's Theses

In the United States alone, each tropical cyclone causes an average of $14.6 billion worth of damages. In addition to the destruction of physical infrastructure, natural disasters also negatively impact human capital formation. These losses are often more difficult to observe, and therefore, are over looked when quantifying the true costs of natural disasters. One particular effect is an increase in infant mortality rates, an important indicator of a country’s general socioeconomic level. This paper utilizes a model created by Anttila-Hughes and Hsiang, that takes advantage of annual variation in tropical cyclones using annual spatial average maximum wind speeds and …


Characterizing The Permanence And Stationary Distribution For A Family Of Malaria Stochastic Models, Divine Wanduku May 2019

Characterizing The Permanence And Stationary Distribution For A Family Of Malaria Stochastic Models, Divine Wanduku

Biology and Medicine Through Mathematics Conference

No abstract provided.


Mathematical Models: The Lanchester Equations And The Zombie Apocalypse, Hailey Bauer Apr 2019

Mathematical Models: The Lanchester Equations And The Zombie Apocalypse, Hailey Bauer

Undergraduate Theses and Capstone Projects

This research study used mathematical models to analyze and depicted specific battle situations and the outcomes of the zombie apocalypse. The original models that predicted warfare were the Lanchester models, while the zombie apocalypse models were fictional expansions upon mathematical models used to examine infectious diseases. In this paper, I analyzed and compared different mathematical models by examining each model’s set of assumptions and the impact of the change in variables on the population classes. The purpose of this study was to understand the basics of the discrete dynamical systems and to determine the similarities between imaginary and realistic models. …


Climate Change In A Differential Equations Course: Using Bifurcation Diagrams To Explore Small Changes With Big Effects, Justin Dunmyre, Nicholas Fortune, Tianna Bogart, Chris Rasmussen, Karen Keene Feb 2019

Climate Change In A Differential Equations Course: Using Bifurcation Diagrams To Explore Small Changes With Big Effects, Justin Dunmyre, Nicholas Fortune, Tianna Bogart, Chris Rasmussen, Karen Keene

CODEE Journal

The environmental phenomenon of climate change is of critical importance to today's science and global communities. Differential equations give a powerful lens onto this phenomenon, and so we should commit to discussing the mathematics of this environmental issue in differential equations courses. Doing so highlights the power of linking differential equations to environmental and social justice causes, and also brings important science to the forefront in the mathematics classroom. In this paper, we provide an extended problem, appropriate for a first course in differential equations, that uses bifurcation analysis to study climate change. Specifically, through studying hysteresis, this problem highlights …


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


A Companion To The Introduction To Modern Dynamics, David D. Nolte Dec 2018

A Companion To The Introduction To Modern Dynamics, David D. Nolte

David D Nolte

A Jr/Sr Mechanics/Dynamics textbook from Oxford University Press, updating how we teach undergraduate physics majors with increased relevance for physics careers in changing times.

Additional materials, class notes and examples to go with the textbook Introduction to Modern Dynamics: Chaos, Networks, Space and Time (Oxford University Press, 2019).

The best parts of physics are the last topics that our students ever see.  These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many of our high-tech businesses.  Topics such as traffic on the World Wide Web, …


Control Theory: The Double Pendulum Inverted On A Cart, Ian J P Crowe-Wright Dec 2018

Control Theory: The Double Pendulum Inverted On A Cart, Ian J P Crowe-Wright

Mathematics & Statistics ETDs

In this thesis the Double Pendulum Inverted on a Cart (DPIC) system is modeled using the Euler-Lagrange equation for the chosen Lagrangian, giving a second-order nonlinear system. This system can be approximated by a linear first-order system in which linear control theory can be used. The important definitions and theorems of linear control theory are stated and proved to allow them to be utilized on a linear version of the DPIC system. Controllability and eigenvalue placement for the linear system are shown using MATLAB. Linear Optimal control theory is likewise explained in this section and its uses are applied to …


Introducing The Fractional Differentiation For Clinical Data-Justified Prostate Cancer Modelling Under Iad Therapy, Ozlem Ozturk Mizrak Oct 2018

Introducing The Fractional Differentiation For Clinical Data-Justified Prostate Cancer Modelling Under Iad Therapy, Ozlem Ozturk Mizrak

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela Jun 2018

Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela

Physics

Carbon nanotubes (CNTs) have been subject to extensive research towards their possible applications in the world of nanoelectronics. The interest in carbon nanotubes originates from their unique variety of properties useful in nanoelectronic devices. One key feature of carbon nanotubes is that the chiral angle at which they are rolled determines whether the tube is metallic or semiconducting. Of main interest to this project are devices containing a thin film of randomly arranged carbon nanotubes, known as carbon nanotube networks. The presence of semiconducting tubes in a CNT network can lead to a switching effect when the film is electro-statically …


Physical Applications Of The Geometric Minimum Action Method, George L. Poppe Jr. May 2018

Physical Applications Of The Geometric Minimum Action Method, George L. Poppe Jr.

Dissertations, Theses, and Capstone Projects

This thesis extends the landscape of rare events problems solved on stochastic systems by means of the \textit{geometric minimum action method} (gMAM). These include partial differential equations (PDEs) such as the real Ginzburg-Landau equation (RGLE), the linear Schroedinger equation, along with various forms of the nonlinear Schroedinger equation (NLSE) including an application towards an ultra-short pulse mode-locked laser system (MLL).

Additionally we develop analytical tools that can be used alongside numerics to validate those solutions. This includes the use of instanton methods in deriving state transitions for the linear Schroedinger equation and the cubic diffusive NLSE.

These analytical solutions are …


Iterative Methods To Solve Systems Of Nonlinear Algebraic Equations, Md Shafiful Alam Apr 2018

Iterative Methods To Solve Systems Of Nonlinear Algebraic Equations, Md Shafiful Alam

Masters Theses & Specialist Projects

Iterative methods have been a very important area of study in numerical analysis since the inception of computational science. Their use ranges from solving algebraic equations to systems of differential equations and many more. In this thesis, we discuss several iterative methods, however our main focus is Newton's method. We present a detailed study of Newton's method, its order of convergence and the asymptotic error constant when solving problems of various types as well as analyze several pitfalls, which can affect convergence. We also pose some necessary and sufficient conditions on the function f for higher order of convergence. Different …


P-46 A Periodic Matrix Model Of Seabird Behavior And Population Dynamics, Mykhaylo M. Malakhov, Benjamin Macdonald, Shandelle M. Henson, J. M. Cushing Mar 2018

P-46 A Periodic Matrix Model Of Seabird Behavior And Population Dynamics, Mykhaylo M. Malakhov, Benjamin Macdonald, Shandelle M. Henson, J. M. Cushing

Honors Scholars & Undergraduate Research Poster Symposium Programs

Rising sea surface temperatures (SSTs) in the Pacific Northwest lead to food resource reductions for surface-feeding seabirds, and have been correlated with several marked behavioral changes. Namely, higher SSTs are associated with increased egg cannibalism and egg-laying synchrony in the colony. We study the long-term effects of climate change on population dynamics and survival by considering a simplified, cross-season model that incorporates both of these behaviors in addition to density-dependent and environmental effects. We show that cannibalism can lead to backward bifurcations and strong Allee effects, allowing the population to survive at lower resource levels than would be possible otherwise.


Distributed Evolution Of Spiking Neuron Models On Apache Mahout For Time Series Analysis, Andrew Palumbo Oct 2017

Distributed Evolution Of Spiking Neuron Models On Apache Mahout For Time Series Analysis, Andrew Palumbo

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Balanced Excitation And Inhibition Shapes The Dynamics Of A Neuronal Network For Movement And Reward, Anca R. Radulescu May 2017

Balanced Excitation And Inhibition Shapes The Dynamics Of A Neuronal Network For Movement And Reward, Anca R. Radulescu

Biology and Medicine Through Mathematics Conference

No abstract provided.


Orbital Stability Results For Soliton Solutions To Nonlinear Schrödinger Equations With External Potentials, Joseph B. Lindgren Jan 2017

Orbital Stability Results For Soliton Solutions To Nonlinear Schrödinger Equations With External Potentials, Joseph B. Lindgren

Theses and Dissertations--Mathematics

For certain nonlinear Schroedinger equations there exist solutions which are called solitary waves. Addition of a potential $V$ changes the dynamics, but for small enough $||V||_{L^\infty}$ we can still obtain stability (and approximately Newtonian motion of the solitary wave's center of mass) for soliton-like solutions up to a finite time that depends on the size and scale of the potential $V$. Our method is an adaptation of the well-known Lyapunov method.

For the sake of completeness, we also prove long-time stability of traveling solitons in the case $V=0$.