Open Access. Powered by Scholars. Published by Universities.®

Analysis Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Analysis

A Weak Fractional Calculus Theory And Numerical Methods For Fractional Differential Equations, Mitchell D. Sutton May 2022

A Weak Fractional Calculus Theory And Numerical Methods For Fractional Differential Equations, Mitchell D. Sutton

Doctoral Dissertations

This dissertation is comprised of four integral parts. The first part comprises a self-contained new theory of weak fractional differential calculus in one-dimension. The crux of this new theory is the introduction of a weak fractional derivative notion which is a natural generalization of integer order weak derivatives; it also helps to unify multiple existing fractional derivative definitions.

The second part of this work presents three new families of fractional Sobolev spaces and their accompanying theory in one-dimension. The new construction and theory are based on a newly developed notion of weak fractional derivatives, which are natural generalizations of the …


Smooth Global Approximation For Continuous Data Assimilation, Kenneth R. Brown Jul 2021

Smooth Global Approximation For Continuous Data Assimilation, Kenneth R. Brown

Theses and Dissertations

This thesis develops the finite element method, constructs local approximation operators, and bounds their error. Global approximation operators are then constructed with a partition of unity. Finally, an application of these operators to data assimilation of the two-dimensional Navier-Stokes equations is presented, showing convergence of an algorithm in all Sobolev topologies.


Analysis Of Feast Spectral Approximations Using The Dpg Discretization, Jay Gopalakrishnan, Luka Grubišić, Jeffrey S. Ovall, Benjamin Quanah Parker Feb 2019

Analysis Of Feast Spectral Approximations Using The Dpg Discretization, Jay Gopalakrishnan, Luka Grubišić, Jeffrey S. Ovall, Benjamin Quanah Parker

Mathematics and Statistics Faculty Publications and Presentations

A filtered subspace iteration for computing a cluster of eigenvalues and its accompanying eigenspace, known as “FEAST”, has gained considerable attention in recent years. This work studies issues that arise when FEAST is applied to compute part of the spectrum of an unbounded partial differential operator. Specifically, when the resolvent of the partial differential operator is approximated by the discontinuous Petrov Galerkin (DPG) method, it is shown that there is no spectral pollution. The theory also provides bounds on the discretization errors in the spectral approximations. Numerical experiments for simple operators illustrate the theory and also indicate the value of …


Polynomial Extension Operators. Part Ii, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl Jan 2009

Polynomial Extension Operators. Part Ii, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl

Mathematics and Statistics Faculty Publications and Presentations

Consider the tangential trace of a vector polynomial on the surface of a tetrahedron. We construct an extension operator that extends such a trace function into a polynomial on the tetrahedron. This operator can be continuously extended to the trace space of H(curl ). Furthermore, it satisfies a commutativity property with an extension operator we constructed in Part I of this series. Such extensions are a fundamental ingredient of high order finite element analysis.


Multigrid Convergence For Second Order Elliptic Problems With Smooth Complex Coefficients, Jay Gopalakrishnan, Joseph E. Pasciak Jan 2008

Multigrid Convergence For Second Order Elliptic Problems With Smooth Complex Coefficients, Jay Gopalakrishnan, Joseph E. Pasciak

Mathematics and Statistics Faculty Publications and Presentations

The finite element method when applied to a second order partial differential equation in divergence form can generate operators that are neither Hermitian nor definite when the coefficient function is complex valued. For such problems, under a uniqueness assumption, we prove the continuous dependence of the exact solution and its finite element approximations on data provided that the coefficients are smooth and uniformly bounded away from zero. Then we show that a multigrid algorithm converges once the coarse mesh size is smaller than some fixed number, providing an efficient solver for computing discrete approximations. Numerical experiments, while confirming the theory, …


Locally Conservative Fluxes For The Continuous Galerkin Method, Bernardo Cockburn, Jay Gopalakrishnan, Haiying Wang Jan 2007

Locally Conservative Fluxes For The Continuous Galerkin Method, Bernardo Cockburn, Jay Gopalakrishnan, Haiying Wang

Mathematics and Statistics Faculty Publications and Presentations

The standard continuous Galerkin (CG) finite element method for second order elliptic problems suffers from its inability to provide conservative flux approximations, a much needed quantity in many applications. We show how to overcome this shortcoming by using a two step postprocessing. The first step is the computation of a numerical flux trace defined on element inter- faces and is motivated by the structure of the numerical traces of discontinuous Galerkin methods. This computation is non-local in that it requires the solution of a symmetric positive definite system, but the system is well conditioned independently of mesh size, so it …


Error Analysis Of Variable Degree Mixed Methods For Elliptic Problems Via Hybridization, Bernardo Cockburn, Jay Gopalakrishnan Mar 2005

Error Analysis Of Variable Degree Mixed Methods For Elliptic Problems Via Hybridization, Bernardo Cockburn, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

A new approach to error analysis of hybridized mixed methods is proposed and applied to study a new hybridized variable degree Raviart-Thomas method for second order elliptic problems. The approach gives error estimates for the Lagrange multipliers without using error estimates for the other variables. Error estimates for the primal and flux variables then follow from those for the Lagrange multipliers. In contrast, traditional error analyses obtain error estimates for the flux and primal variables first and then use it to get error estimates for the Lagrange multipliers. The new approach not only gives new error estimates for the new …


Incompressible Finite Elements Via Hybridization. Part I: The Stokes System In Two Space Dimensions, Bernardo Cockburn, Jay Gopalakrishnan Jan 2005

Incompressible Finite Elements Via Hybridization. Part I: The Stokes System In Two Space Dimensions, Bernardo Cockburn, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

In this paper, we introduce a new and efficient way to compute exactly divergence-free velocity approximations for the Stokes equations in two space dimensions. We begin by considering a mixed method that provides an exactly divergence-free approximation of the velocity and a continuous approximation of the vorticity. We then rewrite this method solely in terms of the tangential fluid velocity and the pressure on mesh edges by means of a new hybridization technique. This novel formulation bypasses the difficult task of constructing an exactly divergence-free basis for velocity approximations. Moreover, the discrete system resulting from our method has fewer degrees …


Incompressible Finite Elements Via Hybridization. Part Ii: The Stokes System In Three Space Dimensions, Bernardo Cockburn, Jay Gopalakrishnan Jan 2005

Incompressible Finite Elements Via Hybridization. Part Ii: The Stokes System In Three Space Dimensions, Bernardo Cockburn, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

We introduce a method that gives exactly incompressible velocity approximations to Stokes ow in three space dimensions. The method is designed by extending the ideas in Part I (http://archives.pdx.edu/ds/psu/10914) of this series, where the Stokes system in two space dimensions was considered. Thus we hybridize a vorticity-velocity formulation to obtain a new mixed method coupling approximations of tangential velocity and pressure on mesh faces. Once this relatively small tangential velocity-pressure system is solved, it is possible to recover a globally divergence-free numerical approximation of the fluid velocity, an approximation of the vorticity whose tangential component is continuous across …


Mortar Estimates Independent Of Number Of Subdomains, Jay Gopalakrishnan Jan 2000

Mortar Estimates Independent Of Number Of Subdomains, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

The stability and error estimates for the mortar finite element method are well established. This work examines the dependence of constants in these estimates on shape and number of subdomains. By means of a Poincar´e inequality and some scaling arguments, these estimates are found not to deteriorate with increase in number of subdomains.