Open Access. Powered by Scholars. Published by Universities.®

Software Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Machine learning

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 63

Full-Text Articles in Software Engineering

Cm-Ii Meditation As An Intervention To Reduce Stress And Improve Attention: A Study Of Ml Detection, Spectral Analysis, And Hrv Metrics, Sreekanth Gopi Dec 2023

Cm-Ii Meditation As An Intervention To Reduce Stress And Improve Attention: A Study Of Ml Detection, Spectral Analysis, And Hrv Metrics, Sreekanth Gopi

Master of Science in Computer Science Theses

Students frequently face heightened stress due to academic and social pressures, particularly in de- manding fields like computer science and engineering. These challenges are often associated with serious mental health issues, including ADHD (Attention Deficit Hyperactivity Disorder), depression, and an increased risk of suicide. The average student attention span has notably decreased from 21⁄2 minutes to just 47 seconds, and now it typically takes about 25 minutes to switch attention to a new task (Mark, 2023). Research findings suggest that over 95% of individuals who die by suicide have been diagnosed with depression (Shahtahmasebi, 2013), and almost 20% of students …


Constructing Cyber-Physical System Testing Suites Using Active Sensor Fuzzing, Fan. Zhang, Qianmei. Wu, Bohan. Xuan, Yuqi. Chen, Wei. Lin, Christopher M. Poskitt, Jun Sun, Binbin. Chen Oct 2023

Constructing Cyber-Physical System Testing Suites Using Active Sensor Fuzzing, Fan. Zhang, Qianmei. Wu, Bohan. Xuan, Yuqi. Chen, Wei. Lin, Christopher M. Poskitt, Jun Sun, Binbin. Chen

Research Collection School Of Computing and Information Systems

Cyber-physical systems (CPSs) automating critical public infrastructure face a pervasive threat of attack, motivating research into different types of countermeasures. Assessing the effectiveness of these countermeasures is challenging, however, as benchmarks are difficult to construct manually, existing automated testing solutions often make unrealistic assumptions, and blindly fuzzing is ineffective at finding attacks due to the enormous search spaces and resource requirements. In this work, we propose active sensor fuzzing , a fully automated approach for building test suites without requiring any a prior knowledge about a CPS. Our approach employs active learning techniques. Applied to a real-world water treatment system, …


Experimental Comparison Of Features, Analyses, And Classifiers For Android Malware Detection, Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, Naing Tun Yan, David Lo, Lingxiao Jiang, Christoph Bienert Sep 2023

Experimental Comparison Of Features, Analyses, And Classifiers For Android Malware Detection, Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, Naing Tun Yan, David Lo, Lingxiao Jiang, Christoph Bienert

Research Collection School Of Computing and Information Systems

Android malware detection has been an active area of research. In the past decade, several machine learning-based approaches based on different types of features that may characterize Android malware behaviors have been proposed. The usually-analyzed features include API usages and sequences at various abstraction levels (e.g., class and package), extracted using static or dynamic analysis. Additionally, features that characterize permission uses, native API calls and reflection have also been analyzed. Initial works used conventional classifiers such as Random Forest to learn on those features. In recent years, deep learning-based classifiers such as Recurrent Neural Network have been explored. Considering various …


Lidar Buoy Detection For Autonomous Marine Vessel Using Pointnet Classification, Christopher Adolphi, Dorothy Dorie Parry, Yaohang Li, Masha Sosonkina, Ahmet Saglam, Yiannis E. Papelis Apr 2023

Lidar Buoy Detection For Autonomous Marine Vessel Using Pointnet Classification, Christopher Adolphi, Dorothy Dorie Parry, Yaohang Li, Masha Sosonkina, Ahmet Saglam, Yiannis E. Papelis

Modeling, Simulation and Visualization Student Capstone Conference

Maritime autonomy, specifically the use of autonomous and semi-autonomous maritime vessels, is a key enabling technology supporting a set of diverse and critical research areas, including coastal and environmental resilience, assessment of waterway health, ecosystem/asset monitoring and maritime port security. Critical to the safe, efficient and reliable operation of an autonomous maritime vessel is its ability to perceive on-the-fly the external environment through onboard sensors. In this paper, buoy detection for LiDAR images is explored by using several tools and techniques: machine learning methods, Unity Game Engine (herein referred to as Unity) simulation, and traditional image processing. The Unity Game …


Defining Safe Training Datasets For Machine Learning Models Using Ontologies, Lynn C. Vonder Haar Apr 2023

Defining Safe Training Datasets For Machine Learning Models Using Ontologies, Lynn C. Vonder Haar

Doctoral Dissertations and Master's Theses

Machine Learning (ML) models have been gaining popularity in recent years in a wide variety of domains, including safety-critical domains. While ML models have shown high accuracy in their predictions, they are still considered black boxes, meaning that developers and users do not know how the models make their decisions. While this is simply a nuisance in some domains, in safetycritical domains, this makes ML models difficult to trust. To fully utilize ML models in safetycritical domains, there needs to be a method to improve trust in their safety and accuracy without human experts checking each decision. This research proposes …


An Empirical Study Of Pre-Trained Model Reuse In The Hugging Face Deep Learning Model Registry, Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R. Schorlemmer, Rohan Sethi, Yung-Hsiang Lu, George K. Thiruvathukal, James C. Davis Jan 2023

An Empirical Study Of Pre-Trained Model Reuse In The Hugging Face Deep Learning Model Registry, Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R. Schorlemmer, Rohan Sethi, Yung-Hsiang Lu, George K. Thiruvathukal, James C. Davis

Department of Electrical and Computer Engineering Faculty Publications

Deep Neural Networks (DNNs) are being adopted as components in software systems. Creating and specializing DNNs from scratch has grown increasingly difficult as state-of-the-art architectures grow more complex. Following the path of traditional software engineering, machine learning engineers have begun to reuse large-scale pre-trained models (PTMs) and fine-tune these models for downstream tasks. Prior works have studied reuse practices for traditional software packages to guide software engineers towards better package maintenance and dependency management. We lack a similar foundation of knowledge to guide behaviors in pre-trained model ecosystems.

In this work, we present the first empirical investigation of PTM reuse. …


An Empirical Study Of Artifacts And Security Risks In The Pre-Trained Model Supply Chain, Wenxin Jiang, Nicholas Synovic, Rohan Sethi, Aryan Indarapu, Matt Hyattt, Taylor R. Schorlemmer, George K. Thiruvathukal, James C. Davis Nov 2022

An Empirical Study Of Artifacts And Security Risks In The Pre-Trained Model Supply Chain, Wenxin Jiang, Nicholas Synovic, Rohan Sethi, Aryan Indarapu, Matt Hyattt, Taylor R. Schorlemmer, George K. Thiruvathukal, James C. Davis

Computer Science: Faculty Publications and Other Works

Deep neural networks achieve state-of-the-art performance on many tasks, but require increasingly complex architectures and costly training procedures. Engineers can reduce costs by reusing a pre-trained model (PTM) and fine-tuning it for their own tasks. To facilitate software reuse, engineers collaborate around model hubs, collections of PTMs and datasets organized by problem domain. Although model hubs are now comparable in popularity and size to other software ecosystems, the associated PTM supply chain has not yet been examined from a software engineering perspective.

We present an empirical study of artifacts and security features in 8 model hubs. We indicate the potential …


Right To Know, Right To Refuse: Towards Ui Perception-Based Automated Fine-Grained Permission Controls For Android Apps, Vikas Kumar Malviya, Chee Wei Leow, Ashok Kasthuri, Naing Tun Yan, Lwin Khin Shar, Lingxiao Jiang Oct 2022

Right To Know, Right To Refuse: Towards Ui Perception-Based Automated Fine-Grained Permission Controls For Android Apps, Vikas Kumar Malviya, Chee Wei Leow, Ashok Kasthuri, Naing Tun Yan, Lwin Khin Shar, Lingxiao Jiang

Research Collection School Of Computing and Information Systems

It is the basic right of a user to know how the permissions are used within the Android app’s scope and to refuse the app if granted permissions are used for the activities other than specified use which can amount to malicious behavior. This paper proposes an approach and a vision to automatically model the permissions necessary for Android apps from users’ perspective and enable fine-grained permission controls by users, thus facilitating users in making more well-informed and flexible permission decisions for different app functionalities, which in turn improve the security and data privacy of the App and enforce apps …


Real Time Call-Flagging System To Respond To Suicidal Ideation In Call Centers, Vishnu Menon, Joseph Carrigan, Charles Floeder, Thomas Walton, Devin Mcguire May 2022

Real Time Call-Flagging System To Respond To Suicidal Ideation In Call Centers, Vishnu Menon, Joseph Carrigan, Charles Floeder, Thomas Walton, Devin Mcguire

Honors Theses

The 2021-2022 Signature Performance Design Studio team developed a live audio call-flagging system that enables faster responses and new response pathways to veteran crises by call service representatives and their management team. Using a custom made deep learning model, live audio streaming server, and Teams broadcasting add-on, the system empowers Signature Performance call service representatives to make quicker and more well informed decisions to provide veteran’s the best care possible.


Automated Reverse Engineering Of Role-Based Access Control Policies Of Web Applications, Ha Thanh Le, Lwin Khin Shar, Domenico Bianculli, Lionel C. Briand, Cu Duy Nguyen Feb 2022

Automated Reverse Engineering Of Role-Based Access Control Policies Of Web Applications, Ha Thanh Le, Lwin Khin Shar, Domenico Bianculli, Lionel C. Briand, Cu Duy Nguyen

Research Collection School Of Computing and Information Systems

Access control (AC) is an important security mechanism used in software systems to restrict access to sensitive resources. Therefore, it is essential to validate the correctness of AC implementations with respect to policy specifications or intended access rights. However, in practice, AC policy specifications are often missing or poorly documented; in some cases, AC policies are hard-coded in business logic implementations. This leads to difficulties in validating the correctness of policy implementations and detecting AC defects.In this paper, we present a semi-automated framework for reverse-engineering of AC policies from Web applications. Our goal is to learn and recover role-based access …


A Survey On Deep Learning For Software Engineering, Yanming Yang, Xin Xia, David Lo Jan 2022

A Survey On Deep Learning For Software Engineering, Yanming Yang, Xin Xia, David Lo

Research Collection School Of Computing and Information Systems

In 2006, Geoffrey Hinton proposed the concept of training "Deep Neural Networks (DNNs)" and an improved model training method to break the bottleneck of neural network development. More recently, the introduction of AlphaGo in 2016 demonstrated the powerful learning ability of deep learning and its enormous potential. Deep learning has been increasingly used to develop state-of-the-art software engineering (SE) research tools due to its ability to boost performance for various SE tasks. There are many factors, e.g., deep learning model selection, internal structure differences, and model optimization techniques, that may have an impact on the performance of DNNs applied in …


Taming The Data In The Internet Of Vehicles, Shahab Tayeb Jan 2022

Taming The Data In The Internet Of Vehicles, Shahab Tayeb

Mineta Transportation Institute Publications

As an emerging field, the Internet of Vehicles (IoV) has a myriad of security vulnerabilities that must be addressed to protect system integrity. To stay ahead of novel attacks, cybersecurity professionals are developing new software and systems using machine learning techniques. Neural network architectures improve such systems, including Intrusion Detection System (IDSs), by implementing anomaly detection, which differentiates benign data packets from malicious ones. For an IDS to best predict anomalies, the model is trained on data that is typically pre-processed through normalization and feature selection/reduction. These pre-processing techniques play an important role in training a neural network to optimize …


Predictive Models In Software Engineering: Challenges And Opportunities, Yanming Yang, Xin Xia, David Lo, Tingting Bi, John C. Grundy, Xiaohu Yang Jan 2022

Predictive Models In Software Engineering: Challenges And Opportunities, Yanming Yang, Xin Xia, David Lo, Tingting Bi, John C. Grundy, Xiaohu Yang

Research Collection School Of Computing and Information Systems

Predictive models are one of the most important techniques that are widely applied in many areas of software engineering. There have been a large number of primary studies that apply predictive models and that present well-performed studies in various research domains, including software requirements, software design and development, testing and debugging, and software maintenance. This article is a first attempt to systematically organize knowledge in this area by surveying a body of 421 papers on predictive models published between 2009 and 2020. We describe the key models and approaches used, classify the different models, summarize the range of key application …


Machine Learning For Stock Prediction Based On Fundamental Analysis, Yuxuan Huang, Luiz Fernando Capretz, Danny Ho Dec 2021

Machine Learning For Stock Prediction Based On Fundamental Analysis, Yuxuan Huang, Luiz Fernando Capretz, Danny Ho

Electrical and Computer Engineering Publications

Application of machine learning for stock prediction is attracting a lot of attention in recent years. A large amount of research has been conducted in this area and multiple existing results have shown that machine learning methods could be successfully used toward stock predicting using stocks’ historical data. Most of these existing approaches have focused on short term prediction using stocks’ historical price and technical indicators. In this paper, we prepared 22 years’ worth of stock quarterly financial data and investigated three machine learning algorithms: Feed-forward Neural Network (FNN), Random Forest (RF) and Adaptive Neural Fuzzy Inference System (ANFIS) for …


Binary Classifiers For Noisy Datasets: A Comparative Study Of Existing Quantum Machine Learning Frameworks And Some New Approaches, Nikolaos Schetakis, Davit Aghamalyan, Paul Robert Griffin, Michael Boguslavsky Nov 2021

Binary Classifiers For Noisy Datasets: A Comparative Study Of Existing Quantum Machine Learning Frameworks And Some New Approaches, Nikolaos Schetakis, Davit Aghamalyan, Paul Robert Griffin, Michael Boguslavsky

Research Collection School Of Computing and Information Systems

This technology offer is a quantum machine learning algorithm applied to binary classification models for noisy datasets which are prevalent in financial and other datasets. By combining hybrid-neural networks, quantum parametric circuits, and data re-uploading we have improved the classification of non-convex 2-dimensional figures by understanding learning stability as noise increases in the dataset. The metric we use for assessing the performance of our quantum classifiers is the area under the receiver operator curve (ROC AUC). We are interested to collaborate with partners with use cases for binary classification of noisy data. Also, as quantum technology is still insufficient for …


Evaluating Machine Learning Model Stability For Software Bug Prediction, Joud El-Shawa Aug 2021

Evaluating Machine Learning Model Stability For Software Bug Prediction, Joud El-Shawa

Undergraduate Student Research Internships Conference

Large software systems are implemented using many different programming languages and scripts, and consequently the dependencies between their components are very complex. It is therefore difficult to extract and understand these dependencies by solely analyzing the source code, so that failure risks can be detected accurately. On the other hand, it is a common practice for software engineers to keep track of process related metrics such as the number of times a component was maintained, with which other components it has been co-committed, whether the maintenance activity was a bug-fixing activity, and how many lines of source code have been …


Finding The Needle In A Haystack: On The Automatic Identification Of Accessibility User Reviews, Eman Abdullah Alomar, Wajdi Aljedaani, Murtaza Tamjeed, Mohamed Wiem Mkaouer, Yasime Elglaly May 2021

Finding The Needle In A Haystack: On The Automatic Identification Of Accessibility User Reviews, Eman Abdullah Alomar, Wajdi Aljedaani, Murtaza Tamjeed, Mohamed Wiem Mkaouer, Yasime Elglaly

Articles

In recent years, mobile accessibility has become an important trend with the goal of allowing all users the possibility of using any app without many limitations. User reviews include insights that are useful for app evolution. However, with the increase in the amount of received reviews, manually analyzing them is tedious and time-consuming, especially when searching for accessibility reviews. The goal of this paper is to support the automated identification of accessibility in user reviews, to help technology professionals in prioritizing their handling, and thus, creating more inclusive apps. Particularly, we design a model that takes as input accessibility user …


Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin Mar 2021

Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin

FIU Electronic Theses and Dissertations

The central aim of this research is the development and deployment of a novel multilayer machine learning design with unique application for the diagnosis of myocardial infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) irrespective of their sampling frequencies over a given range. To the best of our knowledge, this design is the first to attempt inter-patient myocardial infarction detection from individual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is just at the time range in between extremely fast heartbeats of around 300 …


Revman: Revenue-Aware Multi-Task Online Insurance Recommendation, Yu Li, Yi Zhang, Lu Gan, Gengwei Hong, Zimu Zhou, Qiang Li Feb 2021

Revman: Revenue-Aware Multi-Task Online Insurance Recommendation, Yu Li, Yi Zhang, Lu Gan, Gengwei Hong, Zimu Zhou, Qiang Li

Research Collection School Of Computing and Information Systems

Online insurance is a new type of e-commerce with exponential growth. An effective recommendation model that maximizes the total revenue of insurance products listed in multiple customized sales scenarios is crucial for the success of online insurance business. Prior recommendation models are ineffective because they fail to characterize the complex relatedness of insurance products in multiple sales scenarios and maximize the overall conversion rate rather than the total revenue. Even worse, it is impractical to collect training data online for total revenue maximization due to the business logic of online insurance. We propose RevMan, a Revenue-aware Multi-task Network for online …


New Methods For Deep Learning Based Real-Valued Inter-Residue Distance Prediction, Jacob Barger Nov 2020

New Methods For Deep Learning Based Real-Valued Inter-Residue Distance Prediction, Jacob Barger

Theses

Background: Much of the recent success in protein structure prediction has been a result of accurate protein contact prediction--a binary classification problem. Dozens of methods, built from various types of machine learning and deep learning algorithms, have been published over the last two decades for predicting contacts. Recently, many groups, including Google DeepMind, have demonstrated that reformulating the problem as a multi-class classification problem is a more promising direction to pursue. As an alternative approach, we recently proposed real-valued distance predictions, formulating the problem as a regression problem. The nuances of protein 3D structures make this formulation appropriate, allowing predictions …


Machine Learning Integrated Design For Additive Manufacturing, Jingchao Jiang, Yi Xiong, Zhiyuan Zhang, David W. Rosen Nov 2020

Machine Learning Integrated Design For Additive Manufacturing, Jingchao Jiang, Yi Xiong, Zhiyuan Zhang, David W. Rosen

Research Collection School Of Computing and Information Systems

For improving manufacturing efficiency and minimizing costs, design for additive manufacturing (AM) has been accordingly proposed. The existing design for AM methods are mainly surrogate model based. Due to the increasingly available data nowadays, machine learning (ML) has been applied to medical diagnosis, image processing, prediction, classification, learning association, etc. A variety of studies have also been carried out to use machine learning for optimizing the process parameters of AM with corresponding objectives. In this paper, a ML integrated design for AM framework is proposed, which takes advantage of ML that can learn the complex relationships between the design and …


Experimental Comparison Of Features And Classifiers For Android Malware Detection, Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, Wei Minn Oct 2020

Experimental Comparison Of Features And Classifiers For Android Malware Detection, Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, Wei Minn

Research Collection School Of Computing and Information Systems

Android platform has dominated the smart phone market for years now and, consequently, gained a lot of attention from attackers. Malicious apps (malware) pose a serious threat to the security and privacy of Android smart phone users. Available approaches to detect mobile malware based on machine learning rely on features extracted with static analysis or dynamic analysis techniques. Dif- ferent types of machine learning classi ers (such as support vector machine and random forest) deep learning classi ers (based on deep neural networks) are then trained on extracted features, to produce models that can be used to detect mobile malware. …


Novel Deep Learning Methods Combined With Static Analysis For Source Code Processing, Duy Quoc Nghi Bui Aug 2020

Novel Deep Learning Methods Combined With Static Analysis For Source Code Processing, Duy Quoc Nghi Bui

Dissertations and Theses Collection (Open Access)

It is desirable to combine machine learning and program analysis so that one can leverage the best of both to increase the performance of software analytics. On one side, machine learning can analyze the source code of thousands of well-written software projects that can uncover patterns that partially characterize software that is reliable, easy to read, and easy to maintain. On the other side, the program analysis can be used to define rigorous and unique rules that are only available in programming languages, which enrich the representation of source code and help the machine learning to capture the patterns better. …


Objsim: Efficient Testing Of Cyber-Physical Systems, Jun Sun, Zijiang Yang Jul 2020

Objsim: Efficient Testing Of Cyber-Physical Systems, Jun Sun, Zijiang Yang

Research Collection School Of Computing and Information Systems

Cyber-physical systems (CPSs) play a critical role in automating public infrastructure and thus attract wide range of attacks. Assessing the effectiveness of defense mechanisms is challenging as realistic sets of attacks to test them against are not always available. In this short paper, we briefly describe smart fuzzing, an automated, machine learning guided technique for systematically producing test suites of CPS network attacks. Our approach uses predictive ma- chine learning models and meta-heuristic search algorithms to guide the fuzzing of actuators so as to drive the CPS into different unsafe physical states. The approach has been proven effective on two …


A Machine Learning Approach For Vulnerability Curation, Yang Chen, Andrew E. Santosa, Ming Yi Ang, Abhishek Sharma, Asankhaya Sharma, David Lo Jun 2020

A Machine Learning Approach For Vulnerability Curation, Yang Chen, Andrew E. Santosa, Ming Yi Ang, Abhishek Sharma, Asankhaya Sharma, David Lo

Research Collection School Of Computing and Information Systems

Software composition analysis depends on database of open-source library vulerabilities, curated by security researchers using various sources, such as bug tracking systems, commits, and mailing lists. We report the design and implementation of a machine learning system to help the curation by by automatically predicting the vulnerability-relatedness of each data item. It supports a complete pipeline from data collection, model training and prediction, to the validation of new models before deployment. It is executed iteratively to generate better models as new input data become available. We use self-training to significantly and automatically increase the size of the training dataset, opportunistically …


Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead May 2020

Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead

Engineering Faculty Articles and Research

Accessible interactive tools that integrate machine learning methods with clinical research and reduce the programming experience required are needed to move science forward. Here, we present Machine Learning for Medical Exploration and Data-Inspired Care (ML-MEDIC), a point-and-click, interactive tool with a visual interface for facilitating machine learning and statistical analyses in clinical research. We deployed ML-MEDIC in the American Heart Association (AHA) Precision Medicine Platform to provide secure internet access and facilitate collaboration. ML-MEDIC’s efficacy for facilitating the adoption of machine learning was evaluated through two case studies in collaboration with clinical domain experts. A domain expert review was also …


How We Refactor And How We Document It? On The Use Of Supervised Machine Learning Algorithms To Classify Refactoring Documentation, Eman Abdullah Alomar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian D. Newman, Marouane Kessentini, Ali Ouni May 2020

How We Refactor And How We Document It? On The Use Of Supervised Machine Learning Algorithms To Classify Refactoring Documentation, Eman Abdullah Alomar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian D. Newman, Marouane Kessentini, Ali Ouni

Articles

Refactoring is the art of improving the structural design of a software system without altering its external behavior. Today, refactoring has become a well-established and disciplined software engineering practice that has attracted a significant amount of research presuming that refactoring is primarily motivated by the need to improve system structures. However, recent studies have shown that developers may incorporate refactoring strategies in other development-related activities that go beyond improving the design especially with the emerging challenges in contemporary software engineering. Unfortunately, these studies are limited to developer interviews and a reduced set of projects. To cope with the above-mentioned limitations, …


Applying Imitation And Reinforcement Learning To Sparse Reward Environments, Haven Brown May 2020

Applying Imitation And Reinforcement Learning To Sparse Reward Environments, Haven Brown

Computer Science and Computer Engineering Undergraduate Honors Theses

The focus of this project was to shorten the time it takes to train reinforcement learning agents to perform better than humans in a sparse reward environment. Finding a general purpose solution to this problem is essential to creating agents in the future capable of managing large systems or performing a series of tasks before receiving feedback. The goal of this project was to create a transition function between an imitation learning algorithm (also referred to as a behavioral cloning algorithm) and a reinforcement learning algorithm. The goal of this approach was to allow an agent to first learn to …


Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgery (Mars), Jeremiah Sanders May 2020

Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgery (Mars), Jeremiah Sanders

Dissertations & Theses (Open Access)

Prostate cancer is the second most common cancer in men and the second-leading cause of cancer death in men. Brachytherapy is a highly effective treatment option for prostate cancer, and is the most cost-effective initial treatment among all other therapeutic options for low to intermediate risk patients of prostate cancer. In low-dose-rate (LDR) brachytherapy, verifying the location of the radioactive seeds within the prostate and in relation to critical normal structures after seed implantation is essential to ensuring positive treatment outcomes.

One current gap in knowledge is how to simultaneously image the prostate, surrounding anatomy, and radioactive seeds within the …


Automated Identification Of Libraries From Vulnerability Data, Chen Yang, Andrew Santosa, Asankhaya Sharma, David Lo May 2020

Automated Identification Of Libraries From Vulnerability Data, Chen Yang, Andrew Santosa, Asankhaya Sharma, David Lo

Research Collection School Of Computing and Information Systems

Software Composition Analysis (SCA) has gained traction in recent years with a number of commercial offerings from various companies. SCA involves vulnerability curation process where a group of security researchers, using various data sources, populate a database of open-source library vulnerabilities, which is used by a scanner to inform the end users of vulnerable libraries used by their applications. One of the data sources used is the National Vulnerability Database (NVD). The key challenge faced by the security researchers here is in figuring out which libraries are related to each of the reported vulnerability in NVD. In this article, we …