Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 903

Full-Text Articles in Programming Languages and Compilers

Improving Developers' Understanding Of Regex Denial Of Service Tools Through Anti-Patterns And Fix Strategies, Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, Francisco Servant Jan 2023

Improving Developers' Understanding Of Regex Denial Of Service Tools Through Anti-Patterns And Fix Strategies, Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, Francisco Servant

Department of Electrical and Computer Engineering Faculty Publications

Regular expressions are used for diverse purposes, including input validation and firewalls. Unfortunately, they can also lead to a security vulnerability called ReDoS (Regular Expression Denial of Service), caused by a super-linear worst-case execution time during regex matching. Due to the severity and prevalence of ReDoS, past work proposed automatic tools to detect and fix regexes. Although these tools were evaluated in automatic experiments, their usability has not yet been studied; usability has not been a focus of prior work. Our insight is that the usability of existing tools to detect and fix regexes will improve if we complement them …


Advances In The Automatic Detection Of Optimization Opportunities In Computer Programs, Delaram Talaashrafi Dec 2022

Advances In The Automatic Detection Of Optimization Opportunities In Computer Programs, Delaram Talaashrafi

Electronic Thesis and Dissertation Repository

Massively parallel and heterogeneous systems together with their APIs have been used for various applications. To achieve high-performance software, the programmer should develop optimized algorithms to maximize the system’s resource utilization. However, designing such algorithms is challenging and time-consuming. Therefore, optimizing compilers are developed to take part in the programmer’s optimization burden. Developing effective optimizing compilers is an active area of research. Specifically, because loop nests are usually the hot spots in a program, their optimization has been the main subject of many optimization algorithms. This thesis aims to improve the scope and applicability of performance optimization algorithms used in …


Examining The Relationship Between Stomiiform Fish Morphology And Their Ecological Traits, Mikayla L. Twiss Dec 2022

Examining The Relationship Between Stomiiform Fish Morphology And Their Ecological Traits, Mikayla L. Twiss

All HCAS Student Capstones, Theses, and Dissertations

Trait-based ecology characterizes individuals’ functional attributes to better understand and predict their interactions with other species and their environments. Utilizing morphological traits to describe functional groups has helped group species with similar ecological niches that are not necessarily taxonomically related. Within the deep-pelagic fishes, the Order Stomiiformes exhibits high morphological and species diversity, and many species undertake diel vertical migration (DVM). While the morphology and behavior of stomiiform fishes have been extensively studied and described through taxonomic assessments, the connection between their form and function regarding their DVM types, morphotypes, and daytime depth distributions is not well known. Here, three …


Behaviors For Which Deinonychosaurs Used Their Feet, Alexander King Dec 2022

Behaviors For Which Deinonychosaurs Used Their Feet, Alexander King

Honors Projects

This paper seeks to show for what purpose deinonychosaurs used their feet. Fowler et al., (2011) showed that D. antirrhopus’s feet were closest in function to accipitrids, as they found it was more built for grasping prey than running.

I answered this question by using 2D images of the feet of three modern birds (Buteo jamaicensis, Phasianus colchicus, and Gallus gallus domesticus), one eudromaeosaur (Deinonychus antirrhopus), and one troodontid (Borogovia gracilicrus). I used ImageJ to apply 73 landmarks to each foot, capturing the variation between species in the metatarsals and pedal phalanges. These data were then uploaded to the software …


A Logistic Regression And Linear Programming Approach For Multi-Skill Staffing Optimization In Call Centers, Thuy Anh Ta, Tien Mai, Fabian Bastin, Pierre L'Ecuyer Dec 2022

A Logistic Regression And Linear Programming Approach For Multi-Skill Staffing Optimization In Call Centers, Thuy Anh Ta, Tien Mai, Fabian Bastin, Pierre L'Ecuyer

Research Collection School Of Computing and Information Systems

We study a staffing optimization problem in multi-skill call centers. The objective is to minimize the total cost of agents under some quality of service (QoS) constraints. The key challenge lies in the fact that the QoS functions have no closed-form and need to be approximated by simulation. In this paper we propose a new way to approximate the QoS functions by logistic functions and design a new algorithm that combines logistic regression, cut generations and logistic-based local search to efficiently find good staffing solutions. We report computational results using examples up to 65 call types and 89 agent groups …


Conversation Disentanglement With Bi-Level Contrastive Learning, Chengyu Huang, Hao Fei, Lizi Liao, Lizi Liao Dec 2022

Conversation Disentanglement With Bi-Level Contrastive Learning, Chengyu Huang, Hao Fei, Lizi Liao, Lizi Liao

Research Collection School Of Computing and Information Systems

Conversation disentanglement aims to group utterances into detached sessions, which is a fundamental task in processing multi-party conversations. Existing methods have two main drawbacks. First, they overemphasize pairwise utterance relations but pay inadequate attention to the utterance-to-context relation modeling. Second, a huge amount of human annotated data is required for training, which is expensive to obtain in practice. To address these issues, we propose a general disentangle model based on bi-level contrastive learning. It brings closer utterances in the same session while encourages each utterance to be near its clustered session prototypes in the representation space. Unlike existing approaches, our …


R2f: A General Retrieval, Reading And Fusion Framework For Document-Level Natural Language Inference, Hao Wang, Yixin Cao, Yangguang Li, Zhen Huang, Kun Wang, Jing Shao Dec 2022

R2f: A General Retrieval, Reading And Fusion Framework For Document-Level Natural Language Inference, Hao Wang, Yixin Cao, Yangguang Li, Zhen Huang, Kun Wang, Jing Shao

Research Collection School Of Computing and Information Systems

Document-level natural language inference (DocNLI) is a new challenging task in natural language processing, aiming at judging the entailment relationship between a pair of hypothesis and premise documents. Current datasets and baselines largely follow sentence-level settings, but fail to address the issues raised by longer documents. In this paper, we establish a general solution, named Retrieval, Reading and Fusion (R2F) framework, and a new setting, by analyzing the main challenges of DocNLI: interpretability, long-range dependency, and cross-sentence inference. The basic idea of the framework is to simplify document-level task into a set of sentence-level tasks, and improve both performance and …


Evaluation Of Distributed Programming Models And Extensions To Task-Based Runtime Systems, Yu Pei Dec 2022

Evaluation Of Distributed Programming Models And Extensions To Task-Based Runtime Systems, Yu Pei

Doctoral Dissertations

High Performance Computing (HPC) has always been a key foundation for scientific simulation and discovery. And more recently, deep learning models' training have further accelerated the demand of computational power and lower precision arithmetic. In this era following the end of Dennard's Scaling and when Moore's Law seemingly still holds true to a lesser extent, it is not a coincidence that HPC systems are equipped with multi-cores CPUs and a variety of hardware accelerators that are all massively parallel. Coupling this with interconnect networks' speed improvements lagging behind those of computational power increases, the current state of HPC systems is …


Using Landsat Satellite Imagery To Estimate Groundcover In The Grainbelt Of Western Australia, Justin Laycock, Nick Middleton, Karen Holmes Dec 2022

Using Landsat Satellite Imagery To Estimate Groundcover In The Grainbelt Of Western Australia, Justin Laycock, Nick Middleton, Karen Holmes

Resource management technical reports

Maintaining vegetative groundcover is an important component of sustainable agricultural systems and plays a critical function for soil and land conservation in Western Australia’s (WA) grainbelt (the south-west cropping region). This report describes how satellite imagery can be used to quantitatively and objectively estimate total vegetative groundcover, both in near real time and historically across large areas. We used the Landsat seasonal fractional groundcover products developed by the Joint Remote Sensing Research Program from the extensive archive of Landsat imagery. These products provide an estimate of the percentage of green vegetation, non-green vegetation and bare soil for each 30 m …


Three Contributions To The Theory And Practice Of Optimizing Compilers, Linxiao Wang Nov 2022

Three Contributions To The Theory And Practice Of Optimizing Compilers, Linxiao Wang

Electronic Thesis and Dissertation Repository

The theory and practice of optimizing compilers gather techniques that, from input computer programs, aim at generating code making the best use of modern computer hardware. On the theory side, this thesis contributes new results and algorithms in polyhedral geometry. On the practical side, this thesis contributes techniques for the tuning of parameters of programs targeting GPUs. We detailed these two fronts of our work below.

Consider a convex polyhedral set P given by a system of linear inequalities A*x <= b, where A is an integer matrix and b is an integer vector. We are interested in the integer hull PI of P which is the smallest convex polyhedral set that contains all the integer points in P. In Chapter …


Compilation Optimizations To Enhance Resilience Of Big Data Programs And Quantum Processors, Travis D. Lecompte Nov 2022

Compilation Optimizations To Enhance Resilience Of Big Data Programs And Quantum Processors, Travis D. Lecompte

LSU Doctoral Dissertations

Modern computers can experience a variety of transient errors due to the surrounding environment, known as soft faults. Although the frequency of these faults is low enough to not be noticeable on personal computers, they become a considerable concern during large-scale distributed computations or systems in more vulnerable environments like satellites. These faults occur as a bit flip of some value in a register, operation, or memory during execution. They surface as either program crashes, hangs, or silent data corruption (SDC), each of which can waste time, money, and resources. Hardware methods, such as shielding or error correcting memory (ECM), …


Large-Scale Analysis Of Non-Termination Bugs In Real-World Oss Projects, Xiuhan Shi, Xiaofei Xie, Yi Li, Yao Zhang, Sen Chen, Xiaohong Li Nov 2022

Large-Scale Analysis Of Non-Termination Bugs In Real-World Oss Projects, Xiuhan Shi, Xiaofei Xie, Yi Li, Yao Zhang, Sen Chen, Xiaohong Li

Research Collection School Of Computing and Information Systems

Termination is a crucial program property. Non-termination bugs can be subtle to detect and may remain hidden for long before they take effect. Many real-world programs still suffer from vast consequences (e.g., no response) caused by non-termination bugs. As a classic problem, termination proving has been studied for many years. Many termination checking tools and techniques have been developed and demonstrated effectiveness on existing wellestablished benchmarks. However, the capability of these tools in finding practical non-termination bugs has yet to be tested on real-world projects. To fill in this gap, in this paper, we conducted the first large-scale empirical study …


Investigating Bloom's Cognitive Skills In Foundation And Advanced Programming Courses From Students' Discussions, Joel Jer Wei Lim, Gottipati Swapna, Kyong Jin Shim Nov 2022

Investigating Bloom's Cognitive Skills In Foundation And Advanced Programming Courses From Students' Discussions, Joel Jer Wei Lim, Gottipati Swapna, Kyong Jin Shim

Research Collection School Of Computing and Information Systems

Programming courses provide students with the skills to develop complex business applications. Teaching and learning programming is challenging, and collaborative learning is proposed to help with this challenge. Online discussion forums promote networking with other learners such that they can build knowledge collaboratively. It aids students open their horizons of thought processes to acquire cognitive skills. Cognitive analysis of discussion is critical to understand students' learning process. In this paper, we propose Bloom's taxonomy based cognitive model for programming discussion forums. We present machine learning (ML) based solution to extract students' cognitive skills. Our evaluations on compupting courses show that …


Vlstereoset: A Study Of Stereotypical Bias In Pre-Trained Vision-Language Models, Kankan Zhou, Yibin Lai, Jing Jiang Nov 2022

Vlstereoset: A Study Of Stereotypical Bias In Pre-Trained Vision-Language Models, Kankan Zhou, Yibin Lai, Jing Jiang

Research Collection School Of Computing and Information Systems

In this paper we study how to measure stereotypical bias in pre-trained vision-language models. We leverage a recently released text-only dataset, StereoSet, which covers a wide range of stereotypical bias, and extend it into a vision-language probing dataset called VLStereoSet to measure stereotypical bias in vision-language models. We analyze the differences between text and image and propose a probing task that detects bias by evaluating a model’s tendency to pick stereotypical statements as captions for anti-stereotypical images. We further define several metrics to measure both a vision-language model’s overall stereotypical bias and its intra-modal and inter-modal bias. Experiments on six …


Languages And Compilers For Writing Efficient High-Performance Computing Applications, Abhinav Jangda Oct 2022

Languages And Compilers For Writing Efficient High-Performance Computing Applications, Abhinav Jangda

Doctoral Dissertations

Many everyday applications, such as web search, speech recognition, and weather prediction, are executed on high-performance systems containing thousands of Central Processing Units (CPUs) and Graphics Processing Units (GPUs). These applications can be written in either low-level programming languages, such as NVIDIA CUDA, or domain specific languages, like Halide for image processing and PyTorch for machine learning programs. Despite the popularity of these languages, there are several challenges that programmers face when developing efficient high-performance computing applications. First, since every hardware support a different low-level programming model, to utilize new hardware programmers need to rewrite their applications in another programming …


Transrepair: Context-Aware Program Repair For Compilation Errors, Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, Yang Liu Oct 2022

Transrepair: Context-Aware Program Repair For Compilation Errors, Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, Yang Liu

Research Collection School Of Computing and Information Systems

Automatically fixing compilation errors can greatly raise the productivity of software development, by guiding the novice or AI programmers to write and debug code. Recently, learning-based program repair has gained extensive attention and became the stateof-the-art in practice. But it still leaves plenty of space for improvement. In this paper, we propose an end-to-end solution TransRepair to locate the error lines and create the correct substitute for a C program simultaneously. Superior to the counterpart, our approach takes into account the context of erroneous code and diagnostic compilation feedback. Then we devise a Transformer-based neural network to learn the ways …


Towards Understanding The Faults Of Javascript-Based Deep Learning Systems, Lili Quan, Qianyu Guo, Xiaofei Xie, Sen Chen, Xiaohong Li, Yang Liu Oct 2022

Towards Understanding The Faults Of Javascript-Based Deep Learning Systems, Lili Quan, Qianyu Guo, Xiaofei Xie, Sen Chen, Xiaohong Li, Yang Liu

Research Collection School Of Computing and Information Systems

Quality assurance is of great importance for deep learning (DL) systems, especially when they are applied in safety-critical applications. While quality issues of native DL applications have been extensively analyzed, the issues of JavaScript-based DL applications have never been systematically studied. Compared with native DL applications, JavaScript-based DL applications can run on major browsers, making the platform- and device-independent. Specifically, the quality of JavaScript-based DL applications depends on the 3 parts: the application, the third-party DL library used and the underlying DL framework (e.g., TensorFlow.js), called JavaScript-based DL system. In this paper, we conduct the first empirical study on the …


How Many Mutex Bugs Can A Simple Analysis Find In Go Programs?, Fumi Takeuchi, Hidehiko Masuhara, Raffi T. Khatchadourian, Youyou Cong, Keisuke Ishibashi Sep 2022

How Many Mutex Bugs Can A Simple Analysis Find In Go Programs?, Fumi Takeuchi, Hidehiko Masuhara, Raffi T. Khatchadourian, Youyou Cong, Keisuke Ishibashi

Publications and Research

In open-source software, it is known that there are many concurrency bugs. A previous study in Go revealed that a considerable number of such bugs are simple (for example, 9% of the bugs are the ones that forget to unlock a mutex,) through a manual program investigation. This paper tries to detect such bugs by applying a simple analysis to see how far such a tool can match the manual analysis. We built a simple intraprocedural control flow analysis in Go, and evaluated its performance concerning the open source programs with concurrency bugs reported in the previous study. Consequently, as …


User Guided Abductive Proof Generation For Answer Set Programming Queries, Avishkar Mahajan, Martin Strecker, Meng Weng (Huang Mingrong) Wong Sep 2022

User Guided Abductive Proof Generation For Answer Set Programming Queries, Avishkar Mahajan, Martin Strecker, Meng Weng (Huang Mingrong) Wong

Research Collection Yong Pung How School Of Law

We present a method for generating possible proofs of a query with respect to a given Answer Set Programming (ASP) rule set using an abductive process where the space of abducibles is automatically constructed just from the input rules alone. Given a (possibly empty) set of user provided facts, our method infers any additional facts that may be needed for the entailment of a query and then outputs these extra facts, without the user needing to explicitly specify the space of all abducibles. We also present a method to generate a set of directed edges corresponding to the justification graph …


Effective Knowledge Graph Aggregation For Malware-Related Cybersecurity Text, Phillip Ryan Boudreau Aug 2022

Effective Knowledge Graph Aggregation For Malware-Related Cybersecurity Text, Phillip Ryan Boudreau

Graduate Theses and Dissertations

With the rate at which malware spreads in the modern age, it is extremely important that cyber security analysts are able to extract relevant information pertaining to new and active threats in a timely and effective manner. Having to manually read through articles and blog posts on the internet is time consuming and usually involves sifting through much repeated information. Knowledge graphs, a structured representation of relationship information, are an effective way to visually condense information presented in large amounts of unstructured text for human readers. Thusly, they are useful for sifting through the abundance of cyber security information that …


Task-Based Runtime Optimizations Towards High Performance Computing Applications, Qinglei Cao Aug 2022

Task-Based Runtime Optimizations Towards High Performance Computing Applications, Qinglei Cao

Doctoral Dissertations

The last decades have witnessed a rapid improvement of computational capabilities in high-performance computing (HPC) platforms thanks to hardware technology scaling. HPC architectures benefit from mainstream advances on the hardware with many-core systems, deep hierarchical memory subsystem, non-uniform memory access, and an ever-increasing gap between computational power and memory bandwidth. This has necessitated continuous adaptations across the software stack to maintain high hardware utilization. In this HPC landscape of potentially million-way parallelism, task-based programming models associated with dynamic runtime systems are becoming more popular, which fosters developers’ productivity at extreme scale by abstracting the underlying hardware complexity.

In this context, …


Designing Flipped Learning Activities For Beginner Programming Course, Benjamin Gan, Eng Lieh Ouh Jul 2022

Designing Flipped Learning Activities For Beginner Programming Course, Benjamin Gan, Eng Lieh Ouh

Research Collection School Of Computing and Information Systems

This study focuses on designing flipped classroom learning activities across pre-class problem-based exercises; with in-class active discussions and practical problem-solving sessions; and follow up with postclass problem-based labs and assessments. We evaluate the effectiveness of our learning activities based on student surveys, course feedback, grades, and teacher feedback for a beginner programming course with non-IS students. We describe detail programming learning activities with comparisons to existing practices based on related work. Our findings are that majority of students (86%) agreed with flipped classroom, but teachers should be aware of the 14% who disagreed and cater for them. Teachers should avoid …


Structured And Natural Responses Co-Generation For Conversational Search, Chenchen Ye, Lizi Liao, Fuli Feng, Wei Ji, Tat-Seng Chua Jul 2022

Structured And Natural Responses Co-Generation For Conversational Search, Chenchen Ye, Lizi Liao, Fuli Feng, Wei Ji, Tat-Seng Chua

Research Collection School Of Computing and Information Systems

Generating fluent and informative natural responses while main- taining representative internal states for search optimization is critical for conversational search systems. Existing approaches ei- ther 1) predict structured dialog acts first and then generate natural response; or 2) map conversation context to natural responses di- rectly in an end-to-end manner. Both kinds of approaches have shortcomings. The former suffers from error accumulation while the semantic associations between structured acts and natural re- sponses are confined in single direction. The latter emphasizes generating natural responses but fails to predict structured acts. Therefore, we propose a neural co-generation model that gener- ates …


Early Rumor Detection Using Neural Hawkes Process With A New Benchmark Dataset, Fengzhu Zeng, Wei Gao Jul 2022

Early Rumor Detection Using Neural Hawkes Process With A New Benchmark Dataset, Fengzhu Zeng, Wei Gao

Research Collection School Of Computing and Information Systems

Little attention has been paid on EArly Rumor Detection (EARD), and EARD performance was evaluated inappropriately on a few datasets where the actual early-stage information is largely missing. To reverse such situation, we construct BEARD, a new Benchmark dataset for EARD, based on claims from fact-checking websites by trying to gather as many early relevant posts as possible. We also propose HEARD, a novel model based on neural Hawkes process for EARD, which can guide a generic rumor detection model to make timely, accurate and stable predictions. Experiments show that HEARD achieves effective EARD performance on two commonly used general …


A Weakly Supervised Propagation Model For Rumor Verification And Stance Detection With Multiple Instance Learning, Ruichao Yang, Jing Ma, Hongzhan Lin, Wei Gao Jul 2022

A Weakly Supervised Propagation Model For Rumor Verification And Stance Detection With Multiple Instance Learning, Ruichao Yang, Jing Ma, Hongzhan Lin, Wei Gao

Research Collection School Of Computing and Information Systems

The diffusion of rumors on social media generally follows a propagation tree structure, which provides valuable clues on how an original message is transmitted and responded by users over time. Recent studies reveal that rumor verification and stance detection are two relevant tasks that can jointly enhance each other despite their differences. For example, rumors can be debunked by cross-checking the stances conveyed by their relevant posts, and stances are also conditioned on the nature of the rumor. However, stance detection typically requires a large training set of labeled stances at post level, which are rare and costly to annotate. …


Making Curry With Rice: An Optimizing Curry Compiler, Steven Libby Jun 2022

Making Curry With Rice: An Optimizing Curry Compiler, Steven Libby

Dissertations and Theses

In this dissertation we present the RICE optimizing compiler for the functional logic language Curry. This is the first general optimizing compiler for a functional logic language. Our work is based on the idea of compiling through program transformations, which we have adapted from the functional language compiler community. We also present the GAS system for generating new program transformations, which uses the power of functional logic programming to provide a flexible framework for describing transformations. This allows us to describe and implement a wide range of optimizations including inlining, shortcut deforestation, unboxing, and case shortcutting, a new optimization we …


Blocklens: Visual Analytics Of Student Coding Behaviors In Block-Based Programming Environments., Sean Tung, Huan Wei, Haotian Li, Yong Wang, Meng Xia, Huamin. Qu Jun 2022

Blocklens: Visual Analytics Of Student Coding Behaviors In Block-Based Programming Environments., Sean Tung, Huan Wei, Haotian Li, Yong Wang, Meng Xia, Huamin. Qu

Research Collection School Of Computing and Information Systems

Block-based programming environments have been widely used to introduce K-12 students to coding. To guide students effectively, instructors and platform owners often need to understand behaviors like how students solve certain questions or where they get stuck and why. However, it is challenging for them to effectively analyze students’ coding data. To this end, we propose BlockLens, a novel visual analytics system to assist instructors and platform owners in analyzing students’ block-based coding behaviors, mistakes, and problem-solving patterns. BlockLens enables the grouping of students by question progress and performance, identification of common problem-solving strategies and pitfalls, and presentation of insights …


Rasm: Compiling Racket To Webassembly, Grant Matejka Jun 2022

Rasm: Compiling Racket To Webassembly, Grant Matejka

Master's Theses

WebAssembly is an instruction set designed for a stack based virtual machine, with an emphasis on speed, portability and security. As the use cases for WebAssembly grow, so does the desire to target WebAssembly in compilation. In this thesis we present Rasm, a Racket to WebAssembly compiler that compiles a select subset of the top forms of the Racket programming language to WebAssembly. We also present our early findings in our work towards adding a WebAssembly backend to the Chez Scheme compiler that is the backend of Racket. We address initial concerns and roadblocks in adopting a WebAssembly backend and …


Challenges In Migrating Imperative Deep Learning Programs To Graph Execution: An Empirical Study, Tatiana Castro Vélez, Raffi T. Khatchadourian, Mehdi Bagherzadeh, Anita Raja May 2022

Challenges In Migrating Imperative Deep Learning Programs To Graph Execution: An Empirical Study, Tatiana Castro Vélez, Raffi T. Khatchadourian, Mehdi Bagherzadeh, Anita Raja

Publications and Research

Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code that supports symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development tends to produce DL code that is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, less error-prone imperative DL frameworks encouraging eager execution have emerged at the expense of run-time performance. While hybrid approaches aim for the "best of both worlds," the challenges in applying them in the real world are largely unknown. We conduct a data-driven analysis of challenges—and resultant bugs—involved …


A Tool For Rejuvenating Feature Logging Levels Via Git Histories And Degree Of Interest, Yiming Tang, Allan Spektor, Raffi T. Khatchadourian, Mehdi Bagherzadeh May 2022

A Tool For Rejuvenating Feature Logging Levels Via Git Histories And Degree Of Interest, Yiming Tang, Allan Spektor, Raffi T. Khatchadourian, Mehdi Bagherzadeh

Publications and Research

Logging is a significant programming practice. Due to the highly transactional nature of modern software applications, a massive amount of logs are generated every day, which may overwhelm developers. Logging information overload can be dangerous to software applications. Using log levels, developers can print the useful information while hiding the verbose logs during software runtime. As software evolves, the log levels of logging statements associated with the surrounding software feature implementation may also need to be altered. Maintaining log levels necessitates a significant amount of manual effort. In this paper, we demonstrate an automated approach that can rejuvenate feature log …