Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 808

Full-Text Articles in Materials Chemistry

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave Feb 2024

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


Analyzing Novel Metal Alloys For Glucose Sensing And Electrocatalysis, Anna Grace Boddy Jan 2024

Analyzing Novel Metal Alloys For Glucose Sensing And Electrocatalysis, Anna Grace Boddy

Theses and Dissertations

In pharmaceutical and medicinal chemistry, metals and metal alloys often receive less attention compared to biological or organic compounds due to many factors including toxicity in the body for drug development or the cost of these metals. However, metals can play an important role in pharmaceuticals, having an impact on original cancer drugs, such as platinum used for head and neck tumors. Electrocatalysis is also another topic that receives less attention over topics such as chromatography in pharmaceuticals due to its potential toxic catalysts and voltages that could be harmful to the body. Electrocatalytic sensors can play an important role …


Synthesis Of Poly(Styrene-Co-Butyl Acrylate) Pickering Emulsion With Montmorillonite Nanoparticles And Its Comparison With Sodium Dodecyl Sulfate Surfactant On Affecting The Water Barrier Properties Of Coated Paper, Chidubem H. Uchefuna Dec 2023

Synthesis Of Poly(Styrene-Co-Butyl Acrylate) Pickering Emulsion With Montmorillonite Nanoparticles And Its Comparison With Sodium Dodecyl Sulfate Surfactant On Affecting The Water Barrier Properties Of Coated Paper, Chidubem H. Uchefuna

Electronic Theses and Dissertations

Water-borne barrier dispersion coatings on paper have emerged as an alternative to extrusion coatings on paper due to improved recycling, high application speed, and other end of life attributes. Pigments are often added to improve the performance of dispersion coatings. The use of pigments to form a Pickering emulsion during the polymerization step for the production of a barrier coating on paper has not been discussed in the literature.

In this study, montmorillonite (MMT) pigment varied from 0-6 % pigment volume concentration (PVC) was used to synthesize dispersion coatings consisting of poly(styrene-co-butylacrylate) latex and compared with sodium dodecyl …


Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari Dec 2023

Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari

Electronic Theses & Dissertations

Polyurethane (PU) is a versatile material that finds extensive use in various industries including bedding, construction, automotive, and packaging. Historically, this particular polymer relied significantly on petrochemical resources, a practice that was considered to have negative environmental impacts. The conventional method for preparing PU involves the use of isocyanate, which is a disadvantage due to its negative impact on the environment and human health. The resolution of this problem entails identifying an appropriate substitute for petroleum-derived products that minimize their impact on both the environment and human health. The researchers earlier utilized soybean oil, for the formulation of PUs in …


Optimization Of Transition-Metal Inclusive Carbon Aerogels For Electrochemical Energy Applications, Allen Dalton Davis Dec 2023

Optimization Of Transition-Metal Inclusive Carbon Aerogels For Electrochemical Energy Applications, Allen Dalton Davis

Electronic Theses & Dissertations

The ever-growing need for energy alongside rising concerns for climate change demands the development of renewable energy technologies. Hydrogen fuel cells are a promising technology that can serve to either supplement energy generation or act as a lone power source. Yet for these devices to be truly green, the hydrogen that serves as fuel must be procured from a renewable resource. Electrolytic water splitting is a process that allows for the dissociation of water into H2 and O2. For this process to be practical, the electrolyzer needs to demonstrate high efficiency and stability, as well as a …


Exploring Soybean Oil-Based Polyol And Effect Of Non-Halogenated Flame Retardants In Rigid Polyurethane Foam, Sahithi Kondaveeti Dec 2023

Exploring Soybean Oil-Based Polyol And Effect Of Non-Halogenated Flame Retardants In Rigid Polyurethane Foam, Sahithi Kondaveeti

Electronic Theses & Dissertations

To address the increasing demand for sustainable biomaterials due to the depletion of fossil fuel resources and growing environmental concerns, a new type of biodegradable and environmentally friendly rigid polyurethane foam (RPUF) has been synthesized. These foams are derived from chemically modified soybean oil-based polyol obtained from soybean oil by epoxidation followed by a ring-opening reaction. Polyurethane foam is generally used in construction, furniture, and automobile industries but is highly flammable and releases toxic gases and smoke during combustion. In this study, a highly efficient synergistic effect halogen-free flame-retardant (FR) melamine salt, 2-carboxyethyl(phenyl)phosphinic acid melamine salt (CMA) was synthesized from …


Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins Dec 2023

Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins

Doctoral Dissertations

This dissertation focuses on understanding and addressing the fundamental physicochemical phenomena that lead to weak interfaces and structural warpage in material extrusion 3D printing. Polymeric feedstocks used for this manufacturing technique were manipulated through the incorporation of additives that alter the dynamics of the matrix during and after printing. In Chapter II, adhesion between layers of structures printed from PEEK was strengthened through a combination of low-molecular weight additive incorporation and post-printing thermal annealing. Chapter III reports a method for decreasing the irreversible thermal strain of structures printed from poly(lactic acid) by introducing nanographene and photoinitiator additives into the feedstock …


Scalable Solution Processing Of Niox Nanoparticles., Peter James Armstrong Dec 2023

Scalable Solution Processing Of Niox Nanoparticles., Peter James Armstrong

Electronic Theses and Dissertations

Perovskite solar cells (PSCs) are a promising alternative to silicon-based photovoltaics. However, PSCs face several challenges due to shortcomings in their stability, module efficiency, and scaled production. Although PSCs is still a young field of research, significant attention has been given to demonstrating power conversion efficiencies that are on par with traditional silicon. With that target reached, converting the laboratory demonstration into practical materials to increase access and abundance of solar energy are among the next large targets for the field. This comes with material challenges for perovskite and their companion charge transport layers (CTLs). Among the charge transport materials …


Studies On Electrochemical Hydrogen Isotope Separation, Liyanage Mayura Sankalpa Silva Dec 2023

Studies On Electrochemical Hydrogen Isotope Separation, Liyanage Mayura Sankalpa Silva

All Dissertations

Graphene-integrated Proton Exchange Membrane (PEM) electrochemical cells have emerged as a novel area of scientific investigation in the realm of hydrogen isotope separation. Chemical Vapor Deposited (CVD) graphene has been especially useful due to its large-scale production capability for scaling-up purposes. The research described in this dissertation explores the role that inadvertent introduction of cations, notably ammonium and copper, during the CVD graphene transfer onto PEM substrates, such as Nafion, might play in affecting hydrogen ion transport and isotope separation in PEM electrochemical cells. An extensive review of existing literature exposed a gap concerning unintentional cation introductions during graphene transfer, …


The Influence Of Ion-Ion Correlations On Conductivity In Concentrated Ionic Systems, Md Dipu Ahmed Dec 2023

The Influence Of Ion-Ion Correlations On Conductivity In Concentrated Ionic Systems, Md Dipu Ahmed

Masters Theses

This study delves into the fascinating realm of concentrated ionic systems, such as ionic liquids, superionic materials, organic ionic plastic crystals, and polyelectrolytes, which hold immense potential for energy storage applications. The focus is on understanding the intricate role of ionic correlations in shaping their ionic conductivity behavior. These correlations can either boost or impede conductivity, yet their underlying mechanisms remain elusive. Through extensive investigation of various materials, including ionic liquids with differing anionic masses, pure organic ionic plastic crystals, and doped systems, this research employs advanced techniques like dielectric spectroscopy and innovative momentum conservation models to quantify these correlations. …


Nanoparticles And The Environment: Biopolymer Grafted Cellulose And Screen-Printed Carbon Nanotube Composites, Dominique Henry Porcincula Dec 2023

Nanoparticles And The Environment: Biopolymer Grafted Cellulose And Screen-Printed Carbon Nanotube Composites, Dominique Henry Porcincula

Master's Theses

A host of environmental issues will define the state of the environment in the 21st century, with plastic pollution and water shortages among them. While solutions to these problems require large-scale, multipronged solutions, one way we can address them is through material innovation and the use of nanoparticles.

In the first project, we address the issue of plastic pollution by creating nanocomposites of biodegradable polymers (PLA and PCL) with cellulose nanofibrils. Here, PLA and PCL are grafted from the surface of cellulose nanofibrils via ring-opening polymerization of cyclic ester monomers. Polymer-grafted cellulose (PGC) is characterized with structural analysis, solubility …


Quantification Of Dye Degradation On Titanium Dioxide-Based Membranes, Elizabeth Carol Wood Dec 2023

Quantification Of Dye Degradation On Titanium Dioxide-Based Membranes, Elizabeth Carol Wood

Graduate Theses and Dissertations

The purpose of this study was to examine the dye degradation on the titanium dioxide (TiO2)-based membranes. While many studies have shown photocatalytic degradation of dye on TiO2 in solution, few studies have been reported on the solid TiO2 substrate. In this work, a new method is developed to quantify the dye degradation on TiO2-based membranes. A hydrothermal method is used to synthesize the photocatalytic TiO2 nanofibers; vacuum filtration is applied to fabricate a self-assembled membrane. Silver is incorporated into the nanofibers through in situ reduction before vacuum filtration to fabricate Ag/TiO2 membrane in an attempt to red shift the …


Polymer-Based Nanotherapeutics To Combat Difficult-To-Treat Bacterial Infections, Jessa Marie V. Makabenta Nov 2023

Polymer-Based Nanotherapeutics To Combat Difficult-To-Treat Bacterial Infections, Jessa Marie V. Makabenta

Doctoral Dissertations

The continuous emergence and spread of antibiotic-resistant bacteria are a global health emergency, debilitating the capability to prevent and cure various infectious diseases that were once treatable. Antibiotic therapy is further rendered ineffective due to biofilm formation and the ability of bacteria to thrive and colonize inside mammalian cells. Given the diminishing efficacy of available antibiotics combined with the scarcity of new therapeutics entering the antibiotic pipeline, innovative treatment strategies are urgently in demand. Nanomaterial-based strategies offer ‘outside of the box’ approach for the treatment of antibiotic-resistant bacterial infections. Nanomaterials feature tunable physicochemical properties that can be carefully modified to …


Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Applying Density Functional Theory Simulations To Study The Charge Balancing And Structure Directing Roles Of Fluoride In Zeolite Synthesis, Tongkun Wang Nov 2023

Applying Density Functional Theory Simulations To Study The Charge Balancing And Structure Directing Roles Of Fluoride In Zeolite Synthesis, Tongkun Wang

Doctoral Dissertations

Zeolites represent a major cornerstone of today’s energy industry as the most-used petrochemical catalyst by weight in the world. Constituted by tetrahedra of T-atoms including Si, Al, Ge and Ti, zeolites form a huge family of nano-porous crystalline materials which also provide reliable candidates for novel, energy related applications such as efficient separations, hydrogen-purifying/storing and conversions from biomass to biofuel. However, the formation mechanism of zeolite is still not clear, as synthesis processes are complicated by requirements including structure directing agents (SDAs), hydroxide or fluoride medium, and experimental conditions like temperature. Attempts for designing new zeolite structures still fall in …


Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi Nov 2023

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi

Dissertations

This research focuses on the field of surface nanobioscience, wherein different nanosurfaces that will be used as working electrodes in the electrochemical cell are manufactured and surface modified to understand the critical binding interactions between biologically significant molecules like proteins, carbohydrates, small drug molecules, and glycoproteins. This research is essential if we are to determine whether a synthetic molecule can serve as a therapeutic candidate or diagnose a disease in its early stages. In order to fully understand the binding interactions, the study begins with defining some of the fundamental concepts, principles, and analytical tools for biosensing.

Afterwards, we addressed …


Experimental And Simulation Study Of Reactive Silver Ink Droplet Evaporation, Weipeng Zhang Oct 2023

Experimental And Simulation Study Of Reactive Silver Ink Droplet Evaporation, Weipeng Zhang

Electronic Thesis and Dissertation Repository

The evaporation of particle-free silver ink droplets on heated substrates directly impacts the morphology of the resultant silver particles and films. In this thesis, COMSOL Multiphysics simulations of the solvent (water-ethylene glycol mixture) droplet evaporation process are used to explain the microflows, mass transfers, and heat distribution responsible for the experimental observations. The reactive ink incorporates fluoro-surfactant FS-31 and poly (acrylamide) (PAM) to suppress the coffee-ring effect that negatively impacts the electrical conductivity. Experiments show that the droplet evaporation process results in varied silver particle morphology, depending on the locations within the droplet, leading to uneven surfaces. Large particles (3 …


Development Of Single-Crystalline And 3d-Printable Porous Organic Materials, Mingshi Zhang Sep 2023

Development Of Single-Crystalline And 3d-Printable Porous Organic Materials, Mingshi Zhang

Dartmouth College Ph.D Dissertations

Porous organic materials with designable structures, large surface areas, low densities, and unique electronic and optical properties have found widespread applications in adsorption, separation, energy storage, and catalysis. However, the majority of organic porous materials are synthesized as fluffy powders, which poses two fundamental challenges for them. Firstly, they lack a single-crystal structure at the microscopic scale, making it difficult to study the specific pore size, shape, and potential substrate binding sites at the atomic level and further establish the structure-property relationship. Secondly, they lack the general processing method and macroscopic shape design, making it difficult to manufacture suitable components …


Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad Sep 2023

Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad

Dissertations, Theses, and Capstone Projects

In recent years, nanosensors have emerged as a tool with strong potential in medical diagnostics. Single-walled carbon nanotube (SWCNT) based optical nanosensors have notably garnered interest due to the unique characteristics of their near-infrared fluorescence emission, including tissue transparency, photostability, and various chiralities with discrete absorption and fluorescence emission bands. Additionally, the optoelectronic properties of SWCNT are sensitive to the surrounding environment, which makes them suitable for in vitro and in vivo biosensing. Single-stranded (ss) DNA-wrapped SWCNTs have been reported as optical nanosensors for cancers and metabolic diseases. Breast cancer and cardiovascular diseases are the most common causes of death …


The Effect Of Hydrogen Peroxide On The Corrosion Dynamics Of Carbon Steel, Kwang Soak Gabriel O'Donnell Aug 2023

The Effect Of Hydrogen Peroxide On The Corrosion Dynamics Of Carbon Steel, Kwang Soak Gabriel O'Donnell

Electronic Thesis and Dissertation Repository

The Used Fuel Container (UFC) is a key barrier in Canada’s nuclear fuel disposal plan. Understanding the radiation-induced corrosion of the carbon steel (CS) vessel is critical for predicting the long-term integrity of the UFC. Developing a mechanistic understanding of CS corrosion and the effect of solution parameters is essential.

This work investigates the effects of H2O2, the key radiolytic oxidant, on CS corrosion dynamics in small, stagnant solutions. Elementary processes are identified, corrosion rates are calculated, and the effects of H2O2 concentration are investigated. Corrosion was studied by quantifying the concentrations of …


Application Of Crystal Engineering In Multicomponent Pharmaceutical Crystals: A Study Of Theory And Practice, Soroush Ahmadi Nasrabadi Aug 2023

Application Of Crystal Engineering In Multicomponent Pharmaceutical Crystals: A Study Of Theory And Practice, Soroush Ahmadi Nasrabadi

Electronic Thesis and Dissertation Repository

Multicomponent crystallization, a prominent strategy in crystal engineering, offers the ability to modify the physicochemical properties of crystals by introducing a secondary component to their lattice structure. Such multicomponent crystals have found widespread application in the pharmaceutical industry. This thesis explores the experimental screening, characterization, application, and theoretical prediction of multicomponent crystals of Active Pharmaceutical Ingredients (APIs).

The first case study investigates a new solvate of Dasatinib which exhibits high instability at room temperature and transforms into a different polymorph upon desolvation. The crystal structure of this compound is obtained, revealing insights into its transient nature and the potential application …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park Aug 2023

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


Composite And Polymer Formulation Employing Sulfur And Bio-Olefin Feedstocks, Claudia V. Lopez Aug 2023

Composite And Polymer Formulation Employing Sulfur And Bio-Olefin Feedstocks, Claudia V. Lopez

All Dissertations

Environmental sustainability represents a challenge for society since industrial growth has a direct impact on natural resources and waste production. New technologies that effectively incorporate waste into renewable resources are critical to the development of a sustainable and circular economy. The manufacturing of structural materials like Portland cement (OPC) is responsible for >8% of the global anthropogenic emissions of carbon dioxide, with ~ 1 kg of CO2 released to the atmosphere for every kilogram of OPC produced. For instance, the development of sustainable structural materials is a key factor to reduce the greenhouse emissions and to attenuate the climate …


Leveraging Non-Covalent Interactions Between Small Organic Molecules And Inorganic Scaffolds In The Design Of Advanced Materials, Jonathan Lefton Jul 2023

Leveraging Non-Covalent Interactions Between Small Organic Molecules And Inorganic Scaffolds In The Design Of Advanced Materials, Jonathan Lefton

Chemistry Theses and Dissertations

Powder diffraction is a powerful tool for studying crystal structures, especially as it relates to interactions of small organic molecules with inorganic compounds. The first part of this dissertation involves small organic ligands interacting with metal-organic framework, MOF-74. The first and simplest iteration involves the crystal structure solution of a neat, liquid loading of n-propylmercaptan to the open metal sites within the MOF-74 pores. Later studies investigate the leveraging of a similarly sized bitopic ligand in the solution loading of 1,2-ethanedithiol, which results in the amorphization of MOF-74. Having no crystallinity, amorphous or severely defected materials can be a …


From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


Methods Of Magneto-Optical Spectroscopy And Analysis For Porphyrins And Polymer Thin-Films, Emigdio E. Turner Jun 2023

Methods Of Magneto-Optical Spectroscopy And Analysis For Porphyrins And Polymer Thin-Films, Emigdio E. Turner

Chemistry and Chemical Biology ETDs

This dissertation describes the construction of two high precision magneto-polarimeters for performing Faraday rotation and Magnetic Circular Dichroism (MCD) measurements of polymer thin-films. There is a focus in materials science on the development of thin-film magneto-optically active materials. These materials could allow for the construction of a thin-film optical diode, an important device for next-generation photonic technology. Upon completion of the Faraday rotation spectrometer, two publications were generated from Faraday rotation measurements of novel polymer thin-film materials.

With growing interest by materials scientists in magneto-optically active transition-metal containing materials, an MCD spectrometer was constructed to study these materials. This spectrometer …


Covalent Adaptable Networks For Wood Coatings, Jachin Boaz Clarke Jun 2023

Covalent Adaptable Networks For Wood Coatings, Jachin Boaz Clarke

Materials Engineering

Wood swells and shrinks causing problems with seasonal humidity. Applying thick coatings of reactive finishes based on cross-linked polyurethane, epoxy, or polyesters can slow moisture-vapor exchange. However, the use of thick coatings leads to cracking and crazing sooner than thin finishes. This research proposes the addition of 3.3 mol % triazabicyclodecene, a conventionally used covalent adaptable network catalyst, in a commercially available polyester-based wood coating. The self-healing of the wood coating is tested using DMA stress relaxation and compression molding. The result from DMA renders inconclusive and compression molding indicates the novel wood coating oxidizes at elevated temperatures. The wood …


Sers For The Detection Of Trace Materials, Omari Kirkland Jun 2023

Sers For The Detection Of Trace Materials, Omari Kirkland

Dissertations, Theses, and Capstone Projects

In this dissertation are presented three projects that contribute to the body of research on SERS in the forensic, heritage, and semiconductor fields. The first project, Charge-Transfer mapping on GaN/Ag, a silver-decorated nanopillar semiconductor substrate fabricated from the GaN is used with the Raman probe Rhodamine 6 G (R6G) to map the effect of the nanofeatures on the CT resonance. The second project, in collaboration with Marco Leona from the Metropolitan Museum of Art, explores the use of AgNIFs to identify colorants used on textile fiber samples from four 19th century works of Japanese art. The final project analyzes the …


Synthesis And Characterization Of Sodium Cathode Materials, He Zhou May 2023

Synthesis And Characterization Of Sodium Cathode Materials, He Zhou

McKelvey School of Engineering Theses & Dissertations

As sodium batteries hold great promise as a next-generation energy storage device to replace lithium batteries, the development of sodium battery materials has become increasingly urgent. The current study aims to investigate two potential sodium-ion battery cathode materials, Sodium Vanadium Phosphate, and Sodium Manganese Hexacyanoferrate, optimize the experimental procedures, conduct a systematic analysis of material properties and characterization, and ultimately determine the ideal synthesis conditions for these materials.

In the first part of the study, we focused on optimizing the synthesis of Sodium Vanadium Phosphate. By investigating various synthesis conditions, such as annealing temperature, pressure, ascorbic acid content, and material …


Electrochemical Properties Of Mof-Derived Nickel Compounds For High-Performance Supercapacitors And Electrocatalysts, Shiva Bhardwaj May 2023

Electrochemical Properties Of Mof-Derived Nickel Compounds For High-Performance Supercapacitors And Electrocatalysts, Shiva Bhardwaj

Electronic Theses & Dissertations

There are various forms in which humans use energy in daily life. From applications that require a high energy density to long-term storage, the requirements for energy usage are diverse. Therefore, with the continuous increase in users worldwide, more practical energy-driven sources are required, allowing manufacturers to look toward emerging functional materials. An emerging class of functional porous materials referred to as metal-organic framework (MOF) has received considerable attention over the past two decades, partially because of their potential use in various applications, including gas storage, molecular separations, electrocatalyst, and energy devices. For example, metal oxide and hydroxide-based MOF materials …