Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Catalysis

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 234

Full-Text Articles in Chemistry

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong Dec 2023

Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong

Seton Hall University Dissertations and Theses (ETDs)

Plasma catalysis is an advantageous approach that combines the effects of plasma with the enhancements of a catalyst. By utilizing a nickel catalyst in the plasma discharge zone of a dielectric barrier discharge (DBD), it can give an enhancement to the electrical field, boost microdischarges, and increase conversion and selectivity rates of CH4 and CO2 in the dry reforming of methane (DRM) reaction.

Industrial application of nickel catalysts in DBD Plasma DRM process are limited by poor stability, which is caused by the sintering of active metal particles and coke deposition on the catalyst surface. In this work, …


Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio Dec 2023

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio

All Dissertations

Designing new catalytic and sorption materials is necessary to limit global temperature rise below 1.5 ◦C by 2050, while also meeting global energy demands. Climate change and energy production are not mutually exclusive; global population growth has direct impacts on global energy demands and climate. In both catalysis and adsorption applications, new technologies are needed to address these challenges. Catalysis can provide alternate, low-energy routes for converting low-value gases into higher-value chemical commodities, thus altering our current energy production. Likewise, new sorption materials can capture previously emitted CO2 from decades of energy production from fossil fuels, thus helping to …


Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson Nov 2023

Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson

USF Tampa Graduate Theses and Dissertations

Porphyrins are a group of heterocyclic macrocycles that play crucial roles in various biological processes such as electron transfer, catalysis, and sensing. Hemoglobin, which carries oxygen in the blood of mammals, and chlorophyll, which drives photosynthesis in plants and algae, are both porphyrins. The ability of porphyrins to bind metal ions and their unique electronic and photophysical properties make them an excellent platform for designing functional materials for various applications, often drawing inspiration from their function in nature. Metal-organic frameworks (MOFs) are a class of porous materials that have been extensively studied in recent years due to their high surface …


Scandium Triflate-Catalyzed Aromatic Aldehydic C-H Activation, Nicholas Griffin Oct 2023

Scandium Triflate-Catalyzed Aromatic Aldehydic C-H Activation, Nicholas Griffin

Honors Projects

Herein described is a scandium triflate-catalyzed C-H activation of commercially available aromatic aldehydes achieved in low yields. The reaction occured in a one-pot synthesis over a two-hour duration and required minimal purification. Inclusion of a fluorine-tagged phenol allowed for reaction monitoring via 19FNMR.


Synthesis Of 2-Arylpyridines By The Suzuki–Miyaura Cross-Coupling Of Pyfluor With Hetero (Aryl) Boronic Acids And Esters, Juan Rueda-Espinosa, Dewni Ramanayake, Nicholas Ball, Jennifer A. Love Aug 2023

Synthesis Of 2-Arylpyridines By The Suzuki–Miyaura Cross-Coupling Of Pyfluor With Hetero (Aryl) Boronic Acids And Esters, Juan Rueda-Espinosa, Dewni Ramanayake, Nicholas Ball, Jennifer A. Love

Pomona Faculty Publications and Research

The Suzuki–Miyaura cross-coupling of pyridine-2-sulfonyl fluoride (PyFluor) with hetero(aryl) boronic acids and pinacol boronic esters is reported. The reactions can be performed using Pd(dppf)Cl2 as the catalyst, at temperatures between 65 and 100 °C and in the presence of water and oxygen. This transformation generates 2-arylpyridines in modest to good yields (5%–89%).


Improved Stoichiometric Synthesis Of Ccc-Nhc Pincer Rh Complexes And Catalytic Activity Towards Dehydrogenative Silylation And Hydrosilylation Of Alkenes, Enock Amoateng Aug 2023

Improved Stoichiometric Synthesis Of Ccc-Nhc Pincer Rh Complexes And Catalytic Activity Towards Dehydrogenative Silylation And Hydrosilylation Of Alkenes, Enock Amoateng

Theses and Dissertations

N-Heterocyclic carbenes (NHCs) have attracted growing interest not only as successful ancillary ligands in a wide variety of transition-metal-catalyzed reactions but have also shown to offer photophysical and electrochemical properties. The metalation/transmetalation strategy using [Zr(NMe2)4] as initial metalating reagent offers an efficient approach to the preparation of CCC-NHC pincer complexes of the late transition metals such as Rh and Ir. In the process of investigating an intermediate and the mechanism of the metalation/transmetalation to Rh sequence, a mixed valent bimetallic CCC-NHC pincer Rh complex with two chloro ligands bridged between a [(CCC-NHC)Rh(III)] and a [Rh(I)(COD)] fragment …


The Emergence Of Zerovalent Carbon Compounds From Structural Curiosities To Organocatalysts, Allegra L. Liberman-Martin Jul 2023

The Emergence Of Zerovalent Carbon Compounds From Structural Curiosities To Organocatalysts, Allegra L. Liberman-Martin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Low-valent main group compounds have reactivity patterns and properties reminiscent of transition metals. While divalent carbon compounds such as carbenes are widely studied ligands and organocatalysts, zerovalent carbon species have received considerably less attention. This perspective highlights the properties and reactivity of zerovalent carbon compounds, focusing on their first applications as organocatalysts for small molecule reduction and polymerization reactions.


Novel Pathways To Tailor Charge And Spin In Materials And Investigating The Impact On Sensing And Electrochemical Energy Applications, Aruna Narayanan Nair May 2023

Novel Pathways To Tailor Charge And Spin In Materials And Investigating The Impact On Sensing And Electrochemical Energy Applications, Aruna Narayanan Nair

Open Access Theses & Dissertations

Catalysis is integral to our daily lives, as it streamlines and accelerates numerous chemical reactions essential for producing various materials, fuels, and chemicals. With the rising demand for clean, sustainable energy sources, optimizing catalytic materials and processes becomes increasingly vital. In the realm of renewable energy production, catalysis is crucial for efficiently converting energy from sustainable resources, such as solar, wind, and biomass, into chemical energy stored in fuels or directly into electrical energy.The electronic charge distribution in materials significantly influences their physical and chemical properties, facilitating the development of advanced electronic, optoelectronic, sensing, and energy conversion devices. Since catalysis …


Investigations On The Active Catalyst In Pd Catalyzed Organic Reactions, Riley Mcgraw Apr 2023

Investigations On The Active Catalyst In Pd Catalyzed Organic Reactions, Riley Mcgraw

WWU Honors College Senior Projects

Cross coupling and C-H functionalization reactions are valuable tools in the synthesis of pharmaceuticals, natural products, fine chemicals, and electronics. Molecular precatalysts are frequently used in both reactions but because the reactions use conditions like those employed in intentional preparation of nanoparticles, the presence of nanoparticles is highly likely for both systems. In the case of the cross-coupling reaction, nanoparticles have been shown to have catalytic relevance, but C-H functionalization reactions are widely thought to occur by means of a homogenous catalyst. To better understand the state of the active catalyst, a method of homogeneity analysis by centrifuge is proposed. …


Traffic Lights For Catalysis: Stimuli-Responsive Molecular And Extended Catalytic Systems, Grace C. Thaggard, Johanna Haimeri, Roland A. Fischer Prof. Dr., Kyoung Chul Park, Natalia B. Shustova Prof. Dr. Mar 2023

Traffic Lights For Catalysis: Stimuli-Responsive Molecular And Extended Catalytic Systems, Grace C. Thaggard, Johanna Haimeri, Roland A. Fischer Prof. Dr., Kyoung Chul Park, Natalia B. Shustova Prof. Dr.

Faculty Publications

The advances made in the field of stimuli-responsive catalysis during the last five years with a focus on the novel recently-emerged directions and applications have been surveyed. Metal-free catalysts and organometallic complexes, as well as biomimetic systems and extended structures, which display switchable catalytic activity for a variety of organic transformations, are discussed. Light-activated systems comprised of photochromic molecules capable of modulating reaction rate, yield, or enantioselectivity based on geometric and electronic changes associated with photoisomerization are the focus of the detailed discussion. Alternative stimuli, including pH and temperature, which could be applied either alone or in combination with light, …


Asymmetric Cuh-Catalyzed Reductive Coupling Of Allenamides With Carbonyl Electrophiles & Development Of Nanocatalysts For Heterogeneously Catalyzed Buchwald-Hartwig Amination, Raphael K. Klake Jan 2023

Asymmetric Cuh-Catalyzed Reductive Coupling Of Allenamides With Carbonyl Electrophiles & Development Of Nanocatalysts For Heterogeneously Catalyzed Buchwald-Hartwig Amination, Raphael K. Klake

Theses and Dissertations

Many drugs and natural products contain multiple stereogenic carbons bearing heteroatoms throughout their carbon framework. Therefore, methods that can efficiently install multiple heteroatoms on a molecule are valuable. Reductive coupling reactions have been extensively studied, and the allylation of carbonyls via the reductive coupling approach has been a key method for generating chiral tertiary and secondary allylic alcohols. This work utilizes inexpensive Cu for the asymmetric reductive coupling of allenamides with carbonyls to simultaneously install two heteroatoms (oxygen and nitrogen) on the product. These molecules have a polarity profile that make them difficult to make using traditional methods. Herein, we …


Copper-Catalyzed Dehydrogenative Decarboxylation Reactions Of Carboxylic Acids To Alkenes, Michael P. Stanton Jan 2023

Copper-Catalyzed Dehydrogenative Decarboxylation Reactions Of Carboxylic Acids To Alkenes, Michael P. Stanton

Graduate Theses, Dissertations, and Problem Reports

Linear alpha olefins (LAOs) are important building blocks in the production of linear low-density polyethylene, a plastic used in products such as shrink wraps, plastic bags, tubing, plasticizers, among others. Commercial methods for generating LAOs utilize ethylene oligomerization, but this method is reliant on fossil fuels and leads to unselective product formation. Synthesis of LAOs from renewable resources, namely carboxylic acids, by decarbonylative dehydration strategies has been well studied, however, this method has inherent drawbacks rooted in the formation of internal olefin side-products through isomerization pathways. With the goal of avoiding internal isomerization, this thesis explores a dehydrogenative decarboxylation strategy …


Synthetic Methodologies Using Nucleophile-Electrophile Chemistry, Jacob C. Hood Jan 2023

Synthetic Methodologies Using Nucleophile-Electrophile Chemistry, Jacob C. Hood

Graduate Research Theses & Dissertations

Synthetic organic chemistry is a vital part of the modern world – making up 15-20% of the U.S. economy. New synthetic reactions can lower manufacturing costs and create more environmentally friendly processes. Substitution, addition, and superelectrophilic chemistry are potent tools to afford potentially essential compounds. The work outlined in this dissertation recounts the expansion of synthetic methodologies employing substrates with a wide range of electrophilicities toward synthesizing heterocyclic molecules. These concepts are summarized in chapter 1. Chapter 2: N-Heterocyclic alcohols are excellent substrates for superacid-promoted Friedel-Crafts reactions. The N-heterocyclic alcohol ionizes to produce reactive, dicationic intermediates, providing good to excellent …


Class A Sortases: Structures And Alternative Substrate Binding And Cleavage, Brandon Vogel Jan 2023

Class A Sortases: Structures And Alternative Substrate Binding And Cleavage, Brandon Vogel

WWU Graduate School Collection

Sortases, consisting of classes A-F, are cysteine transpeptidases found in the cell wall of Gram-positive bacteria. They play a crucial role in ligating proteins to the cell wall that are responsible for cell adhesion, immune evasion, host cell invasion, and nutrient acquisition through a transpeptidation reaction. Consequently, they are an attractive therapeutic target. Class A sortases are also utilized in protein engineering applications such as sortase-mediated ligations and sortagging. Despite extensive research in the past two decades, gaps persist in understanding how class A sortases recognize their substrates, primarily due to a lack of structural information on sortases non-covalently bound …


First Principles Calculations To Investigate Surface And Catalytic Properties Of Materials For Green Energy Generation, Keerthan Raghavendra Rao Jan 2023

First Principles Calculations To Investigate Surface And Catalytic Properties Of Materials For Green Energy Generation, Keerthan Raghavendra Rao

Theses and Dissertations--Chemistry

Climate change due to greenhouse gas build up in the earth’s atmosphere is an existential threat to humanity. To mitigate climate change, a significant shift from fossil fuels is necessary. Over the years, several renewable energy sources like solar, wind, geothermal etc. have been explored with the aim providing carbon-free energy. In this work, we focus on using density functional theory (DFT) methods to investigate key functional properties of materials of interest for applications in solar cells and catalytic conversion for energy generation. We show geometric effects of carboxylic acid binding on a transition metal surface to impact the deoxygenation …


Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown Jan 2023

Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown

Graduate Theses, Dissertations, and Problem Reports

Ammonia is critical to supporting human life on earth because of its use as fertilizer. The Haber-Bosch process to produce ammonia has been practiced for over 100 years. This process operates at high pressure and temperature to overcome the thermodynamic and kinetic limitations of the ammonia synthesis reaction thus researchers have tried to overcome it for decades. At present this process represents 1% of global energy usage and 2.5% of global CO2 emissions. The proposed chemical looping ammonia synthesis approach seeks to reduce the environmental impact of this critical process and to elucidate microwave-catalytic principles.

This research aims to …


Synthesis Of A Series Of Trimeric Branched Glycoconjugates And Their Applications For Supramolecular Gels And Catalysis, Jonathan Bietsch, Anji Chen, Dan Wang, Guijun Wang Jan 2023

Synthesis Of A Series Of Trimeric Branched Glycoconjugates And Their Applications For Supramolecular Gels And Catalysis, Jonathan Bietsch, Anji Chen, Dan Wang, Guijun Wang

Chemistry & Biochemistry Faculty Publications

Carbohydrate-derived molecular gelators have found many practical applications as soft materials. To better understand the structure and molecular gelation relationship and further explore the applications of sugar-based gelators, we designed and synthesized eight trimeric branched sugar triazole derivatives and studied their self-assembling properties. These included glucose, glucosamine, galactose, and maltose derivatives. Interestingly, the gelation properties of these compounds exhibited correlations with the peripheral sugar structures. The maltose derivative did not form gels in the tested solvents, but all other compounds exhibited gelation properties in at least one of the solvents. Glucose derivatives showed superior performance, followed by glucosamine derivatives. They …


Tethered Axial Coordination As A Control Modality In Rhodium(Ii)-Catalyzed Carbene Transfer Reactions, Anthony Dean Abshire Dec 2022

Tethered Axial Coordination As A Control Modality In Rhodium(Ii)-Catalyzed Carbene Transfer Reactions, Anthony Dean Abshire

Doctoral Dissertations

Rhodium(II) paddlewheels are versatile carbene transfer catalyst that are broadly applied in insertion reactions, cycloadditions, and ylide transformations. The effects of axial coordination in rhodium(II)-catalyzed carbene transfer reactions are still little understood due to compounding factors that are difficult to isolate. Traditionally, researchers study axial coordination by addition of Lewis base additives. To ensure interaction between the Lewis base and catalyst, high molar equivalents are used. This can also have the undesired effect of hampering the activity of the catalyst and suppressing the yield of the reaction. We have developed ligands with a tethered Lewis base to overcome these issues. …


Elucidation Of Active Site And Mechanism Of Metal Catalysts Supported In Nu-1000, Hafeera Shabbir Dec 2022

Elucidation Of Active Site And Mechanism Of Metal Catalysts Supported In Nu-1000, Hafeera Shabbir

All Dissertations

Advances in extraction of shale oil and gas has increased the production of geographically stranded natural gas (primarily consisting of methane (C1) and ethane (C2)) that is burned on site. A potential utilization strategy for shale gas is to convert it into fuel range hydrocarbons by catalytic dehydrogenation followed by oligomerization by direct efficient catalysts. This work focuses on understanding metal cation catalysts supported on metal-organic framework (MOF) NU-1000 that will actively and selectively do this transformation under mild reaction conditions, while remaining stable to deactivation (via metal agglomeration or sintering). I built computational models validated by experimental methods to …


The Synthesis, Lewis Acidity And Catalytic Activity Of Bis(Catecholato)Germanes, Andrew T. Henry Nov 2022

The Synthesis, Lewis Acidity And Catalytic Activity Of Bis(Catecholato)Germanes, Andrew T. Henry

Electronic Thesis and Dissertation Repository

Main group Lewis acids have been shown to be viable alternatives to state-of-theart transition metal catalysts. While extensive research into a variety of p-block Lewis acids have been reported, the field of germanium Lewis acid chemistry has been described as “almost non-existent”. A variety of bis(catecholato)germane derivatives have been synthesized. The Lewis acidity of these compounds was analyzed by the Gutmann-Beckett and fluoride ion affinity methods demonstrating the high Lewis acidity of these complexes. The bis(catecholato)germanes were utilized as Lewis acid catalysts for the hydrosilylation of aldehydes, the hydroboration of alkynes, Friedel-Crafts alkylation of alkenes, and the oligomerization of styrene …


Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng Sep 2022

Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng

Journal of Electrochemistry

Oxygen evolution reaction (OER) is a significant half-reaction for water splitting reaction, and attention is directed to the high-performance non-precious catalysts. Iron nickel (FeNi)-based material is considered as the most promising pre-catalyst, that will be transferred to the real active phase in the form of high valence state metal species. Even so, the catalytic performance is largely influenced by the structure and morphology of the FeNi pre-catalysts, and lots of work has been done to optimize and tune the structure and chemical environment of the FeNi- based pre-catalysts so as to increase the catalytic performance. Herein, based on our work, …


Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb Aug 2022

Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb

Electronic Theses and Dissertations

Increasing concentrations of fluorinated aromatic compounds in surface water, groundwater, and soil pose threats to the environment. Fundamental studies that elucidate mechanisms of dehalogenation for C-X compounds (where X represents a halide) are required to develop effective remediation strategies. For halogenated benzenes, previously published research has suggested that the strength of the C-X bond is not rate-determining in the overall rate of dehalogenation. Instead, the rate-determining step has been hypothesized to be adsorption of the C-X compound onto the surface of a catalyst. Building on this hypothesis, in this work, we examine the reaction kinetics of fluorobenzene conversion to benzene, …


Synthesis And Evaluation Of Water-Dispersed Aryl-Gold Nanoparticles And Applications In Catalysis, Ahmad Al Ahmad Aug 2022

Synthesis And Evaluation Of Water-Dispersed Aryl-Gold Nanoparticles And Applications In Catalysis, Ahmad Al Ahmad

Electronic Theses and Dissertations

Gold nanoparticles have been used in environmental remediation as catalysts through biological and chemical redox reactions of many types of industrial waste including nitroarenes, organic dyes, carbon monoxide, and others. These reactions occur in harsh environmental conditions (e.g. changing temperature, presence of salts, extreme pH solutions) which require robust nanoparticles that can keep their activity and resist aggregation. This thesis describes the synthesis, characterization, and investigation of the catalytic activity of gold-aryl nanoparticles. Gold–aryl nanoparticles (AuNPs-COOH) fabricated using a mild reduction process of a molecular aryldiazonium gold(III) salt [HOOC-4-C6H4N≡N]AuCl4 showed high stability in the presence of high ionic strength salt, …


Calcium Bistriflimide-Mediated Sulfur (Vi)–Fluoride Exchange (Sufex): Mechanistic Insights Toward Instigating Catalysis, Nicholas Ball, Brian Han, Samuel R. Khasnavis, Matthew Nwerem, Michael Bertagna, O Maduka Ogba Jun 2022

Calcium Bistriflimide-Mediated Sulfur (Vi)–Fluoride Exchange (Sufex): Mechanistic Insights Toward Instigating Catalysis, Nicholas Ball, Brian Han, Samuel R. Khasnavis, Matthew Nwerem, Michael Bertagna, O Maduka Ogba

Pomona Faculty Publications and Research

We report a mechanistic investigation of calcium bistriflimide-mediated sulfur(VI)–fluoride exchange (SuFEx) between sulfonyl fluorides and amines. We determine the likely pre-activation resting state─a calcium bistriflimide complex with ligated amines─thus allowing for corroborated calculation of the SuFEx activation barrier at ∼21 kcal/mol, compared to 21.5 ± 0.14 kcal/mol derived via kinetics experiments. Transition state analysis revealed: (1) a two-point calcium-substrate contact that activates the sulfur(VI) center and stabilizes the leaving fluoride and (2) a 1,4-diazabicyclo[2.2.2]octane additive that provides Brønsted-base activation of the nucleophilic amine. Stable Ca–F complexes upon sulfonamide formation are likely contributors to inhibited catalytic turnover, and a proof-of-principle redesign …


C-H On The Oxo Ferryl Wheel: Comparison Of Pyridine And Imidazole-Substituted Ligands For C-H Activation And Functionalization, Elizabeth Milem May 2022

C-H On The Oxo Ferryl Wheel: Comparison Of Pyridine And Imidazole-Substituted Ligands For C-H Activation And Functionalization, Elizabeth Milem

Electronic Theses and Dissertations

The selective and efficient transformation of hydrocarbon feedstocks is of high value for industry and research. While Shilov-type organometallic methods have facilitated this goal, systems designed after nature’s use of cheap and abundant iron-based enzymes are desired for wider-scale applications. This work establishes hydrocarbon oxidation efficiency of synthetic pyridine-based ligands (BPMEN, BPMPN) compared to commercially available TPA with in situ generated catalysts. Literature studies of traditionally synthesized BPMEN systems and initial in situ studies offered evidence for enhanced reactivity (TON) as compared to TPA. Expansion to a propyl backbone to produce BPMPN tested the increased chelate ring size’s impact on …


Influence Of Tethered, Axially Coordinated Ligands On Rh(Ii,Ii)-Catalyzed Carbene Transfer Reactions, Cristian E. Zavala May 2022

Influence Of Tethered, Axially Coordinated Ligands On Rh(Ii,Ii)-Catalyzed Carbene Transfer Reactions, Cristian E. Zavala

Doctoral Dissertations

Dirhodium (II,II) paddlewheel complexes have become ubiquitous in diazo-mediated carbene transfer reactions. The Rh(II,II)-carbene intermediate is capable of a large variety of transformations such as cyclopropanation, C-H and X-H (O, N, S, Si, B) insertion reactions, cyclopropenations, and ylide transformations. Cyclopropanation reactions resulting in the formation of functionalized cyclopropane structures has always been a major focus in Rh(II,II)-carbene chemistry. Improvements on catalytic performance in cyclopropanations has largely focused on the modification of the bridging ligands and has resulted in Rh(II,II) catalysts that exhibit high reactivity and selectivity in cyclopropanation reactions. However, high enantio- and diastereoselectivity is not easily achieved with …


Solvent Effects In Phenol Hydrogenation On A Supported Ruthenium Catalyst, Daniel Mckeon May 2022

Solvent Effects In Phenol Hydrogenation On A Supported Ruthenium Catalyst, Daniel Mckeon

Honors College

Growing concerns around climate have piqued interest in using biobased alternatives in place of fuels and chemicals traditionally made from petroleum. Lignocellulosic biomass has been noted for its potential as a biobased chemical precursor in the context of a biorefinery. It can be pyrolyzed to yield an oil, but catalytic upgrading is required to lower oxygen content to suitable levels. Ruthenium supported on titania has been identified as a catalyst suitable for hydrodeoxygenation of oxygenated aromatic pyrolysis products in the liquid phase. In liquid phase reactions, intermolecular attractions between the solvent and the reactants can significantly change chemical activities and …


A Comparative Study Of Two Nickel-Based Suzuki-Miyaura Hybrid Molecular Catalysts, Mollie Morrow Apr 2022

A Comparative Study Of Two Nickel-Based Suzuki-Miyaura Hybrid Molecular Catalysts, Mollie Morrow

Senior Theses

Two molecular nickel-based catalysts, (2,2’bipyridine-4,4’-carboxylic acid)nickel(II) chloride and (2,2'-bipyridine-4,4'-diamidopropylsilatrane)nickel(II) chloride, were synthesized and subsequently attached to a solid support in the form of amorphous silicon dioxide to create two hybrid molecular/heterogeneous catalysts. Characterization using ICP-MS and ATR-FTIR confirms that both catalysts are bonded to the SiO2 support. The catalysts were both able to catalyze a Suzuki-Miyarua cross-coupling which their molecular counterparts were unable to; the carboxylate catalyst was able to achieve yields of 10% and the silatrane catalyst achieved yields of up to 50%. Post-reaction analysis indicated that while some catalyst desorption occurred in both complexes, active catalytic species …


Synthesis And Characterization Of Enantioenriched Deuterated And Fluorinated Small Molecules, Mitchell D. Mills Apr 2022

Synthesis And Characterization Of Enantioenriched Deuterated And Fluorinated Small Molecules, Mitchell D. Mills

Master's Theses (2009 -)

The development of novel deuterated and fluorinated bioisosteres has significantly impacted the pharmaceutical and agricultural industry and created a growing demand for new synthetic methodology. Both deuterated and fluorinated small molecules exist at the forefront of drug discovery due to their unique ability to attenuate the pharmacokinetic properties of new and currently existing drugs. Selective, high-throughput methods for deuteration and fluorination are scarce in the literature, especially methods that introduce D or F atoms asymmetrically. Benzylic CH bonds are oftentimes key sites for enzymatic manipulation in metabolic processes, alteration of CH bonds to CD or CF bonds at the benzylic …