Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 637

Full-Text Articles in Cosmology, Relativity, and Gravity

Neutrino’S Non-Zero Electric Potential As An Origin Of Gravitation, Domain Structure And Expansion Of The Universe., Polievkt Perov Mar 2024

Neutrino’S Non-Zero Electric Potential As An Origin Of Gravitation, Domain Structure And Expansion Of The Universe., Polievkt Perov

College of Arts & Sciences Faculty Works

The axial electric potentials of neutrinos as neutral composite structures, while being very small at large distances, do not vanish, and the same can be said about the neutrino “asymmetric dipoles” (paired neutrinos of not the same kind). Depending on the orientation of the “asymmetric dipole”, its far-field electric potential in some direction can be positive or negative, interacting with other “dipoles” at that large distance attractively or repulsively depending on their mutual orientation. The mutual orientation of the dipoles locally (inside a galaxy) might be such that they are aligned and experience the attractive force toward the local center …


Synchronicity: An Analysis Of Einstein's Halfway Rule, Preslava Nikolova Jan 2024

Synchronicity: An Analysis Of Einstein's Halfway Rule, Preslava Nikolova

Rushton Journal of Undergraduate Humanities Research

For the modern world to function, Global Positioning System satellites must synchronize to clocks on Earth. This paper examines a concept that underlies GPS systems, namely Albert Einstein’s halfway rule—the idea that a line of simultaneity exists between two events in different systems. This essay discusses how Einstein used conventionalist methods to establish ½ as a constant value for σ to take advantage of the property of symmetry.


Conventions, Definitions, Identities, And Other Useful Formulae, Robert A. Mcnees Iv Jan 2024

Conventions, Definitions, Identities, And Other Useful Formulae, Robert A. Mcnees Iv

Physics: Faculty Publications and Other Works

As the name suggests, these notes contain a summary of important conventions, definitions, identities, and various formulas that I often refer to. They may prove useful for researchers working in General Relativity, Supergravity, String Theory, Cosmology, and related areas.


Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part I: Theoretical Underpinning, Victor Christianto, T. Daniel Chandra, Florentin Smarandache Dec 2023

Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part I: Theoretical Underpinning, Victor Christianto, T. Daniel Chandra, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

As a senior physicist colleague and our friend, Robert N. Boyd, wrote in a journal (JCFA, Vol. 1,. 2, 2022), Our universe is but one page in a large book [4]. For example, things and Beings can travel between Universes, intentionally or unintentionally. In this short remark, we revisit and offer short remark to Neil’s ideas and trying to connect them with geometrization of musical chords as presented by D. Tymoczko and others, then to Escher staircase and then to Jacob’s ladder which seems to point to possibility to interpret Jacob’s vision as described in the ancient book of Genesis …


Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part Ii: Experiment Description, Victor Christianto, T. Daniel Chandra, Florentin Smarandache Dec 2023

Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part Ii: Experiment Description, Victor Christianto, T. Daniel Chandra, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

The present article was partly inspired by G. Pollack’s book, and also Dadoloff, Saxena & Jensen (2010). As a senior physicist colleague and our friend, Robert N. Boyd, wrote in a journal (JCFA, Vol. 1, No. 2, 2022), for example, things and Beings can travel between Universes, intentionally or unintentionally [4]. In this short remark, we revisit and offer short remark to Neil Boyd’s ideas and trying to connect them with geometry of musical chords as presented by D. Tymoczko and others, then to Escherian staircase and then to Jacob’s ladder which seems to pointto possibility to interpret Jacob’s vision …


Tests Of General Relativity Through Searches For Lorentz And Cpt Symmetry Breaking, Kellie Ault Aug 2023

Tests Of General Relativity Through Searches For Lorentz And Cpt Symmetry Breaking, Kellie Ault

Doctoral Dissertations and Master's Theses

An effective field theory framework, the Standard Model Extension (SME), provides an agnostic, systematic test of General Relativity (GR) and its founding spacetime symmetries, Lorentz and CPT symmetry. Violating these symmetries may provide clues toward unifying the physics of the General Relativity and the Standard Model of particle physics. Part of this work involves the merge of theory, data analysis and experiments with gravitational wave (GW) signals from LIGO/Virgo/KAGRA (LVK) detectors. A modified dispersion relation derived from the SME of GWs is implemented into the LIGO Scientific Collaboration Algorithm Library Suite (LALSuite), where a joint Bayesian inference of the source …


Cosmic Diffuse Neutrino And Gamma-Ray Backgrounds In The Mev Regime, Ilukpitiye Samalka Anandagoda Aug 2023

Cosmic Diffuse Neutrino And Gamma-Ray Backgrounds In The Mev Regime, Ilukpitiye Samalka Anandagoda

All Dissertations

Cosmic Multi-Messenger backgrounds include relic diffuse components created in the early Universe and contributions from individual sources. In this dissertation, I present the work done in Anandagoda (2019); Anandagoda et al. (2020, 2023) where type Ia (SNe Ia) and core-collapse supernovae (CCSNe) contributions to the diffuse neutrino and gamma-ray backgrounds in the MeV regime are studied. These backgrounds are referred to as DSNB and DSGB respectively. Based on this work, the diffuse SN Ia background is ~106 times lower (for electron antineutrinos) than the CCSN background making it negligible. The predicted DSNB electron antineutrino flux at earth in the …


Simulating The Eccentricity Evolution Of Accreting Equal-Mass Binaries: Numerical Sensitivity To The Computational Domain Size And Grid Resolution, Zhongtian Hu Aug 2023

Simulating The Eccentricity Evolution Of Accreting Equal-Mass Binaries: Numerical Sensitivity To The Computational Domain Size And Grid Resolution, Zhongtian Hu

All Theses

With high resolution hydrodynamics simulations, we show that the optimal values of domain radius and grid resolution for the software Sailfish when simulating time-based eccentricity evolution of equal mass, non-circular accreting binaries in a circumbinary disk to be $r_{\rm out} \leq 15a$ and $\delta x / a \le 0.01 $. These values provide a useful guideline for optimizing the performance of simulation runs while maintaining scientific accuracy. Each artificial parameter is probed with 15 runs of 2000 orbits each.


Development And Testing Of A New Method For Velocity-Selecting White Dwarfs From Gaia By Galactic Population, Joseph Hammill Jul 2023

Development And Testing Of A New Method For Velocity-Selecting White Dwarfs From Gaia By Galactic Population, Joseph Hammill

Doctoral Dissertations and Master's Theses

The detailed processes by which spiral galaxies form remains an open question in modern cosmology. Observations of the current configuration of spiral galaxies including the Milky Way reveal thin and thick disk and halo populations which must all be accounted for in formation theories and likely have distinct ages. Using the Milky Way as an example to probe this question, we are studying the formation history of these structures.

This work details our approach to age-dating the galaxy, velocity-selecting targets from a sample of white dwarfs from the Gaia DR3 catalog that have also been age-analysed using BASE-9. BASE-9 uses …


Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue Jun 2023

Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue

Dartmouth College Ph.D Dissertations

In this thesis I explore two main topics: the role and consequences of cosmological vector fields, and new ideas for constraining fundamental physics with state-of-the-art experiments. These topics are disparate in content and technique but unified in their attempt to leverage novel approaches to better understand longstanding questions in cosmology. These questions, such as ``What is causing the universe to accelerate today?'' and ``What are the neutrino masses?'', underpin the modern cosmological paradigm. They play a key role in our understanding of cosmic history, the formation of structure, and the fate of our universe. Answers to or hints about these …


Mapping Galactic Acceleration With Pulsar Timing, Abigail Moran May 2023

Mapping Galactic Acceleration With Pulsar Timing, Abigail Moran

University Scholar Projects

We have conducted a cross match of objects in Gaia Early Data Release 3 and millisecond pulsars (MSPs) in the International Pulsar Timing Array’s Data Release 2 (IPTA DR2) to identify binary systems. Gaia has parallax measurements for these optical companions, which we combine with pulsar timing based parallax measurements to calculate new combined MSP distances. Through this crossmatch with IPTA DR2 we improved five distance measurements and found the first parallax measurement for one MSP.

Using this Gaia crossmatch method now with a well-timed subset of the Australia Telescope National Facility’s database, we found three new pulsar distances. We …


Constraining H0 Via Extragalactic Parallax, Nicholas Ferree Apr 2023

Constraining H0 Via Extragalactic Parallax, Nicholas Ferree

Honors Theses

We examine the prospects for measurement of the Hubble parameter 𝐻0 via observation of the secular parallax of other galaxies due to our own motion relative to the cosmic microwave background rest frame. Peculiar velocities make distance measurements to individual galaxies highly uncertain, but a survey sampling many galaxies can still yield a precise 𝐻0 measurement. We use both a Fisher information formalism and simulations to forecast errors in 𝐻0 from such surveys, marginalizing over the unknown peculiar velocities. The optimum survey observes ∼ 102 galaxies within a redshift 𝐻0max = 0.06. The required errors …


Characterization Of Extended Uncertainty Principle Black Holes, Juan Uribe, Jonas Mureika Apr 2023

Characterization Of Extended Uncertainty Principle Black Holes, Juan Uribe, Jonas Mureika

Honors Thesis

Black Holes are special objects as they are at the intersection of Quantum Mechanics and General Relativity. A central tenant of quantum mechanics is the Uncertainty Principle that dictates we cannot know with complete certainty position and momentum at the same time. The Extended Uncertainty Principle introduces a position-related uncertainty correction L_* to account for General Relativity. In a previous paper, a black hole metric associated with the Extended Uncertainty Principle was derived, by modifying the metric function of a Schwarzschild black hole. This metric introduces near-horizon structures that should produce observable effects, such as love numbers, gravitational wave echoes, …


New Physics In The Age Of Precision Cosmology, Vivian I. Sabla Apr 2023

New Physics In The Age Of Precision Cosmology, Vivian I. Sabla

Dartmouth College Ph.D Dissertations

The Lambda-cold dark matter (LCDM) model has become the standard model of cosmology because of its ability to reproduce a vast array of cosmological observations, from the earliest moments of our Universe, to the current period of accelerated expansion, which it does with great accuracy. However, the success of this model only distracts from its inherent flaws and ambiguities. LCDM is purely phenomenological, providing no physical explanation for the nature of dark matter, responsible for the formation and evolution of large-scale structure, and giving an inconclusive explanation for dark energy, which drives the current period of accelerated expansion.

Furthermore, cracks …


Stellar Atmosphere Models For Select Veritas Stellar Intensity Interferometry Targets, Jackson Ladd Sackrider, Jason P. Aufdenberg, Katelyn Sonnen Mar 2023

Stellar Atmosphere Models For Select Veritas Stellar Intensity Interferometry Targets, Jackson Ladd Sackrider, Jason P. Aufdenberg, Katelyn Sonnen

Beyond: Undergraduate Research Journal

Since 2020 the Very Energetic Radiation Imaging Telescope Array System (VERITAS) has observed 48 stellar targets using the technique of Stellar Intensity Interferometry (SII). Angular diameter measurements by VERITAS SII (VSII) in a waveband near 400 nm complement existing angular diameter measurements in the near-infrared. VSII observations will test fundamental predictions of stellar atmosphere models and should be more sensitive to limb darkening and gravity darkening effects than measurements in the near-IR, however, the magnitude of this difference has not been systematically explored in the literature. In order to investigate the synthetic interferometric (as well as spectroscopic) appearance of stars …


Eccentric Pairs: Analytic Gravitational Waves From Binary Black Holes In Elliptic Orbits, Dillon Buskirk, Maria Babiuc-Hamilton Jan 2023

Eccentric Pairs: Analytic Gravitational Waves From Binary Black Holes In Elliptic Orbits, Dillon Buskirk, Maria Babiuc-Hamilton

Physics Faculty Research

Gravitational waves (GW) from eccentric binaries have intricate signals encoding important features about the location, creation and evolution of the sources. Eccentricity shortens the merger time, making the emitted GW statistically predominant in the observed data once detectors will reach the required sensitivity. We present a novel implementation of fully analytical GW templates from eccentric binary black hole (BBH) mergers within the Wolfram Mathematica software. We increase the accuracy by identifying and minimizing the possible source of errors. We start with an overview of the physics involved in eccentric mergers, then assemble the strain for the inspiral by employing up …


Evolution Of Density And Velocity Perturbations In A Slowly Contracting Universe, Olivia R. Bitcon Jan 2023

Evolution Of Density And Velocity Perturbations In A Slowly Contracting Universe, Olivia R. Bitcon

Honors Undergraduate Theses

One focus of research in cosmology regards the growth of structure in the universe: how we end up with stars, galaxies, galaxy clusters, and large scale structure in a universe that appears homogeneous and isotropic on large scales. Using cosmological perturbation theory, we investigate the evolution of density and velocity perturbations corresponding to a universe that is slowly contracting (Ijjas and Steinhardt), testing with and comparing different values for the equation-of-state parameter. This allows for the comparison of the growth of large scale structure in scenarios including a matter-dominated expanding universe, a dark energy-dominated expanding universe, and now, an ekpyrotic …


Properties Of Slicing Conditions For Charged Black Holes, Sean E. Li Jan 2023

Properties Of Slicing Conditions For Charged Black Holes, Sean E. Li

Honors Projects

We consider an earlier analysis by Baumgarte and de Oliveira (2022) of static Bona-Massó slices of stationary, nonrotating, uncharged black holes, represented by Schwarzschild spacetimes, and generalize that approach to Reissner-Nordström (RN) spacetimes, representing stationary, nonrotating black holes that carry a nonzero charge. This charge is parametrized by the charge-to-mass ratio λQ/M, where M is the black-hole mass and the charge Q may represent electrical charge or act as a placeholder for extensions of general relativity. We use a height-function approach to construct time-independent, spherically symmetric slices that satisfy a so-called Bona-Massó slicing condition. We …


Forecasting And Optimizing Sensitivity To Low-Frequency Gravitational Waves, Andrew Ryan Kaiser Jan 2023

Forecasting And Optimizing Sensitivity To Low-Frequency Gravitational Waves, Andrew Ryan Kaiser

Graduate Theses, Dissertations, and Problem Reports

Pulsars are among the most exotic objects in our Universe. These rapidly
spinning, high magnetic field neutron stars can be used for a wide range of
scientific studies: from the makeup of their own extremely dense and poorly
understood interior to using their extremely regular signals to detect gravita-
tional waves (GWs). Pulsar timing continues to expand to broader communi-
ties, with larger and more sensitive radio telescopes planned and partnerships
between pulsar timing arrays (PTAs) that span the entire globe. A realm of
new physics with the detection of a background hum of gravitational waves
from black holes merging …


Applications Of Digital Filters In Radio Astronomy, Joseph William Kania Jan 2023

Applications Of Digital Filters In Radio Astronomy, Joseph William Kania

Graduate Theses, Dissertations, and Problem Reports

The radio sky spans tens of orders of magnitude in length, density, and time.
In this thesis, using novel filtering techniques and two different telescopes,
we investigate two tracers of cosmic structure: Baryon Acoustic Oscillations
(BAOs) and Fast Radio Bursts (FRBs). BAOs formed as the universe cooled
after the Big Bang. BAOs provide a fiducial length scale of the universe
throughout cosmic time and thus can be used to understand how the universe
is evolving. FRBs are very bright, short timescale, bursts of as-yet unknown
origin which occur uniformly on the sky at a rate of a few thousand per …


Black Holes, Disk Structures, And Cosmological Implications In E-Dimensional Space, Subhash Kak, Menas C. Kafatos Dec 2022

Black Holes, Disk Structures, And Cosmological Implications In E-Dimensional Space, Subhash Kak, Menas C. Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

We examine a modern view of the universe that builds on achieved successes of quantum mechanics, general relativity, and information theory, bringing them together in integrated approach that is founded on the realization that space itself is e-dimensional. The global and local implications of noninteger dimensionality are examined, and how it may have increased from the value of zero to its current value is investigated. We find surprising aspects that tie to structures in the universe, black holes, and the role of observations.


Weak Gravitational Lensing Analysis In Two Superclusters Of Galaxies, Sarah B. Rice Dec 2022

Weak Gravitational Lensing Analysis In Two Superclusters Of Galaxies, Sarah B. Rice

Electronic Theses and Dissertations

Observations of the Universe on very large scales have shown it to be filled with galaxy clusters and superclusters connected by walls and filaments of galaxies, with vast areas mostly devoid of luminous matter separating them. It is widely accepted that the amount of luminous matter does not provide the mass needed to hold galaxies and galaxy clusters together, and the nature of the missing "dark matter" is one of the most prominent astrophysical mysteries today. Since dark matter interacts with luminous matter gravitationally, it stands to reason that dark matter might organize itself in a similar manner to luminous …


Detectability Of Wormholes Through Various Methods, Jonathan W. Keathley Oct 2022

Detectability Of Wormholes Through Various Methods, Jonathan W. Keathley

PANDION: The Osprey Journal of Research and Ideas

There are three methods that can possibly detect wormholes: Negative Temperature, Hawking/ Phantom Radiation, and iron emission lines. This paper discusses whether or not any of these three methods are useful ways to detect wormholes with today’s technology and if so, which one is the best and which is the worst. As it turns out, all of these methods have their flaws and impracticalities. After looking through all the evidence and comparing it to what capabilities we have currently, there is clearly a best and worst method. The best method to detect possible wormhole candidates is through the detection …


Astrophysics, Cosmology And Particle Phenomenology At The Energy Frontier, Jorge Fernandez Soriano Sep 2022

Astrophysics, Cosmology And Particle Phenomenology At The Energy Frontier, Jorge Fernandez Soriano

Dissertations, Theses, and Capstone Projects

This dissertation consists of two parts, treating significantly separated fields. Each part consists on several chapters, each treating a somewhat isolated topic from the rest. In each chapter, I present some of the work developed during my passage through the graduate program, which has mostly been published elsewhere.

Part I – Cosmic Rays and Particle Physics

  • Chapter 1: In this chapter we present an introduction to the topic of cosmic ray physics, with an special focus on the so-called ultra high energy cosmic rays: their potential origins, effects during their propagation between their sources and Earth, the different techniques used …


Fermion-Induced Electroweak Symmetry Non-Restoration Via Temperature-Dependent Masses, Yu Hang Ng Aug 2022

Fermion-Induced Electroweak Symmetry Non-Restoration Via Temperature-Dependent Masses, Yu Hang Ng

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Standard Model (SM) and many extensions of SM predict that the electroweak (EW) symmetry was restored in the early universe when the temperature was around 160 GeV. However, recent studies showed that the interactions between some new scalars and SU(2)_L Higgs doublet(s) can cause the EW symmetry to remain broken at temperatures well above the EW scale in certain renormalizable extensions of SM. In this study, we found that new fermions from renormalizable models can also induce this EW symmetry non-restoration effect, provided that they have the appropriate temperature-dependent masses. These masses can arise naturally from the interactions between the …


The Cosmic History Of X-Ray Binary Evolution, Woodrow Gilbertson Aug 2022

The Cosmic History Of X-Ray Binary Evolution, Woodrow Gilbertson

Graduate Theses and Dissertations

The Chandra Deep Fields provide an extraordinary window into the high-energy history of the cosmos. Observations of non-active galaxies within the deep fields can be leveraged to extract information about the formation and evolution of X-ray binaries (XRBs). Previous studies have suggested that the evolution of XRB luminosity can be expressed a function of physical parameters such as star formation rate, stellar mass, stellar age, and metallicity. The goal of this work is to develop and implement a complete physical parameterization for the luminosity of XRB populations, which can be utilized for a variety of further studies.

Chapter 1 provides …


Understanding Martian Salts And Their Implications For Liquid Water, Rachel Slank Aug 2022

Understanding Martian Salts And Their Implications For Liquid Water, Rachel Slank

Graduate Theses and Dissertations

Water is one of the key components for life as we know it. The existence of salts on Mars has been a large contributing factor to the possibility of habitability, due to their ability to allow liquid water to remain stable at colder temperatures. Salts, including perchlorates, chlorates, and chlorides, have been detected by multiple landers, rovers, and orbiters, and are now believed to be ubiquitous on Mars. One of the pathways to liquid brine solutions is through deliquescence. Deliquescence is the transition from a solid salt crystal into an aqueous solution when exposed to a humid atmosphere. This research …


Surpassing The Standard Quantum Limit Using An Optical Spring, Torrey Cullen Jul 2022

Surpassing The Standard Quantum Limit Using An Optical Spring, Torrey Cullen

LSU Doctoral Dissertations

In 1916, Albert Einstein predicted the existence of gravitational waves based on his new theory of general relativity. He predicted an accelerating mass with a non-zero quadrupole moment would emit energy in the form of gravitational waves. Often referred to as ripples in space-time, gravitational waves are extremely small by the time reach Earth, potentially having traveled hundreds of megaparsecs. It is common for these ripples in space-time to stretch and squeeze matter 1000 times smaller than the width of a proton.
Laser interferometer observatories were first built in the 1990s in the US and Europe, and as sensitivity improvements …


Challenging Predictions Of Inflationary Models With Cmb Data, Richik Bhattacharya, Atanu Debnath, Esha Sajjanhar, Shravani Sardeshpande, Pablo Tenorio Hernández, José Ricardo Torres Heredia Jul 2022

Challenging Predictions Of Inflationary Models With Cmb Data, Richik Bhattacharya, Atanu Debnath, Esha Sajjanhar, Shravani Sardeshpande, Pablo Tenorio Hernández, José Ricardo Torres Heredia

2022 REYES Proceedings

Cosmic inflation offers the best known explanations for many of the observed features of the Universe, such as its flatness. An imprint of the qualities of this mechanism is left in the cosmic microwave background (CMB), which can be instrumental to confirm inflation. Unfortunately, there is a plethora of inflationary models, which are a priori in the same footing. It is conceivable that contrasting the predictions of the various models with the measured values of the parameters of CMB data and other cosmological observables shall allow one to single out the successful theory of inflation. In this work we provide …


Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik Jun 2022

Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik

Doctoral Dissertations

Self-shielding in ton-scale liquid xenon (LXe) detectors presents a unique challenge for calibrating detector response to interactions in the detector's innermost volume. Calibration radioisotopes must be injected directly into the LXe to reach the central volume, where they must either decay away with a short half life or be purified out. We present an overview of, and results from, the prototype source injection system (SIS) developed at the University of Massachusetts Amherst for the LUX-ZEPLIN experiment (LZ). The SIS is designed to refine techniques for the injection and removal of precise activities of various calibration radioisotopes that are useful in …