Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 112

Full-Text Articles in Astrophysics and Astronomy

Temporal And Spectral Analysis Of 1es 2344+514 In Two Flaring States Observed By Veritas, Connor Poggemann Dec 2023

Temporal And Spectral Analysis Of 1es 2344+514 In Two Flaring States Observed By Veritas, Connor Poggemann

Physics

VERITAS observed the bright blazar 1ES 2344+514 during two flaring periods, one from Dec. 17 to Dec. 18, 2015 (MJD 57373-57374) with a peak flux of ~60% of the Crab and another from Nov. 28 to Dec. 3, 2021 (MJD 59546-59551) with a peak flux of ~20% of the Crab. This blazar, located at a redshift of z = 0.044, is classified as an extreme high-frequency-peaked BL Lacertae object (HBL). It is known to be variable, including several previous day-scale flares: Whipple on Dec. 20, 1995, VERITAS on Dec. 7, 2007, and MAGIC on Aug. 11, 2016. The VERITAS near-nightly …


An Introduction To The Veritas Observatory, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer Oct 2023

An Introduction To The Veritas Observatory, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer

Annual Student Research Poster Session

Located at the base of Mount Hopkins, Arizona, at an elevation of approximately 4200 feet, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma ray observatory containing four Cherenkov telescopes designed to detect very high energy gamma rays with energies ranging from 100GeV to 10TeV using the Imaging Atmospheric Cherenkov Technique. In April 2007, VERITAS began successful operations with all four telescopes. As of today, over 15 years of data has been taken by the VERITAS array, stored in an archive of data, and used for a wide variety of research, publications, PhD theses, and conventions …


Analysis Of The Crab Nebula And Pulsar, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer Oct 2023

Analysis Of The Crab Nebula And Pulsar, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer

Annual Student Research Poster Session

Although the Crab Nebula is well understood, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) still regularly observes the Crab's highest energy emissions. These emissions are used to calibrate the telescopes, further, document the system, and investigate the validity of physical models. Our research this summer is geared to analyze data from 2018-2022 to add to an ongoing research project investigating the long term variability of the Crab Nebula’s emission.


Identifying And Analyzing Multi-Star Systems Among Tess Planetary Candidates Using Gaia, Katie E. Bailey May 2023

Identifying And Analyzing Multi-Star Systems Among Tess Planetary Candidates Using Gaia, Katie E. Bailey

Electronic Theses and Dissertations

Exoplanets represent a young, rapidly advancing subfield of astrophysics where much is still unknown. It is therefore important to analyze trends among their parameters to learn more about these systems. More complexity is added to these systems with the presence of additional stellar companions. To study these complex systems, one can employ programming languages such as Python to parse databases such as those constructed by TESS and Gaia to bridge the gap between exoplanets and stellar companions. Data can then be analyzed for trends in these multi-star exoplanet systems and in juxtaposition to their single-star counterparts. This research was able …


Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark May 2023

Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark

Physics Theses & Dissertations

Recent research has shown a relationship between spiral galaxy satellite populations and the size of spiral bulges. The modern cosmological model of our universe (ΛCDM), does not predict this. Instead, ΛCMD predicts that only the total dynamical mass of a host galaxy should be correlated with satellite populations. We investigate this relationship in regimes other than satellites. In this study we compare the bulge to total mass ratios of spiral galaxies to the number of nearby galaxies within “n” Mpc. We use four papers from literature that calculate bulge to total mass ratios of 189 spiral galaxies using …


New Physics In The Age Of Precision Cosmology, Vivian I. Sabla Apr 2023

New Physics In The Age Of Precision Cosmology, Vivian I. Sabla

Dartmouth College Ph.D Dissertations

The Lambda-cold dark matter (LCDM) model has become the standard model of cosmology because of its ability to reproduce a vast array of cosmological observations, from the earliest moments of our Universe, to the current period of accelerated expansion, which it does with great accuracy. However, the success of this model only distracts from its inherent flaws and ambiguities. LCDM is purely phenomenological, providing no physical explanation for the nature of dark matter, responsible for the formation and evolution of large-scale structure, and giving an inconclusive explanation for dark energy, which drives the current period of accelerated expansion.

Furthermore, cracks …


Certainty Is Wild And Weaving: Analyzing The Clouds Of Venus, Grace Sanger-Johnson Jan 2023

Certainty Is Wild And Weaving: Analyzing The Clouds Of Venus, Grace Sanger-Johnson

Senior Projects Spring 2023

Supposed detection of phosphine as a biosigature in the clouds of Venus has resulted in a flurry of interest in studying the potential habitability of Venus and other Venus-like exoplanets. However, there are still many unanswered questions about the planet's atmosphere. In this senior project, use spectroscopy to better understand the molecular composition and atmospheric dynamics of Venus. To do this, I analyzed partly-processed spectra from a previously unstudied infrared wavelength obtained at NASA’s Infrared Telescope Facility in July 2021. I developed multiple systems of analysis to extract information from the partly processed data and understand the consequences of this …


Investigating The Thermodynamics And Seismic Profile Of The Europan Hydrosphere Through Pure-Water Modeling And Saltwater Experiments, Samantha Rosenfeld Jun 2022

Investigating The Thermodynamics And Seismic Profile Of The Europan Hydrosphere Through Pure-Water Modeling And Saltwater Experiments, Samantha Rosenfeld

Honors Theses

We explore the properties of the hydrosphere on Europa involving both a modeling technique and experimental methods. We perform a computational analysis of the thermodynamic properties for an ideal, pure-water Europan ice shell using a Python programming framework called SeaFreeze. We create four models assuming surface temperatures of either 50 K or 140 K and ice shell thicknesses of either 3 km or 30 km. We observe mostly linear trends for the density and seismic wave velocities with respect to depth and find that surface temperature has the greatest effect on the models. Simultaneously, we experimentally investigate the phase diagram …


Electromagnetic Detectability Of Binary Supermassive Black Holes, Kaylee Grace May 2022

Electromagnetic Detectability Of Binary Supermassive Black Holes, Kaylee Grace

Honors Scholar Theses

Supermassive black hole (SMBH) binaries can be produced by galaxy mergers and are important sources of gravitational waves. Although several binary candidates have been identified in previous work, none have yet been fully confirmed. These pairs are difficult to detect, since single accreting SMBHs can have pseudo-periodic lightcurves due to stochastic noise that can mimic the signature of binary SMBHs. The aforementioned lightcurves are the detections we classify as ”false-positive.” The Vera Rubin Observatory (VRO) will be a powerful new tool for detecting binary SMBHs. We determine the false-positive binary detection rate for VRO by attempting to recover sinusoidal binary …


Dr. Jennifer Hoffman, Anit Tyagi Jan 2022

Dr. Jennifer Hoffman, Anit Tyagi

DU Undergraduate Research Journal Archive

An interview with Dr. Jennifer Hoffman.


Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou Jan 2022

Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou

Physics Faculty Publications

Explorations of the violation of null energy condition (NEC) in cosmology could enrich our understanding of the very early universe and the related gravity theories. Although a fully stable NEC violation can be realized in the “beyond Horndeski” theory, it remains an open question whether a violation of the NEC is allowed by some fundamental properties of UV-complete theories or the consistency requirements of effective field theory (EFT). We investigate the tree-level perturbative unitarity for stable NEC violations in the contexts of both Galileon and “beyond Horndeski” genesis cosmology, in which the universe is asymptotically Minkowskian in the past. We …


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


The James Webb Space Telescope And Scientific Progress, Robert Astle Apr 2021

The James Webb Space Telescope And Scientific Progress, Robert Astle

Quest

Independent Research Paper

Research in progress for PHYS 2425: University Physics I

Faculty Mentor: Raji Kannampuzha, Ph.D.

The following paper represents research work done by students in University Physics 2425, the first half of a two-semester introductory course in physics. It is a calculus- based physics course, intended primarily for physics, chemistry, math, and engineering majors. Students are introduced to the concept of academic research by learning to ask research-focused questions and then use the library resources to pursue outside research to find answers. For this assignment, students are asked to investigate a physical science, biological science, or technology problem …


Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn Mar 2021

Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn

Honors Theses

The Askaryan Radio Array Experiment, located near the South Pole, works to pinpoint specific instances of neutrinos from outside the solar system interacting with nucleons inside the Antarctic ice, emitting radio waves. I have taken data from the ARA stations which is presumed to be background noise and compared it to simulated data meant to look like a neutrino signal. I developed a suite of variables for discrimination between the two data sets, using a computer algorithm to generate a single output variable which can be used to distinguish noise events from signal events. I maximized this discrimination process for …


Long-Baseline Neutrino Oscillation Physics Potential Of The Dune Experiment, B. Abi, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, C. Alt, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andringa, A. Ankowski, M. Antonova, S. Antusch, A. Aranda-Fernandez, A. Ariga, L. O. Arnold, Roberto Petti, Et. Al. Oct 2020

Long-Baseline Neutrino Oscillation Physics Potential Of The Dune Experiment, B. Abi, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, C. Alt, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andringa, A. Ankowski, M. Antonova, S. Antusch, A. Aranda-Fernandez, A. Ariga, L. O. Arnold, Roberto Petti, Et. Al.

Faculty Publications

The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ for δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 …


Physics For Everyone, Charles Liu, Sarang Gopalakrishnan, Vadim Oganesyan Oct 2020

Physics For Everyone, Charles Liu, Sarang Gopalakrishnan, Vadim Oganesyan

Open Educational Resources

The online educational resource Physics For Everyone is the scaffolding for a 3 contact hour, 3 credit general education course that will be offered for the first time at the CUNY College of Staten Island in the spring semester of 2021. This work has been generously supported by New America’s PIT-UN (Public Interest Technology University Network) challenge grant program, and is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This slide deck provides the outline for the semester-long course. Each week’s lecture topics, with key points to be covered, are highlighted in two slides, which also list writing prompts, …


Determining The Rotational And Orbital Velocities Of Objects In The Solar System, Mark Jones May 2020

Determining The Rotational And Orbital Velocities Of Objects In The Solar System, Mark Jones

Undergraduate Honors Theses

Astronomers have been observing the night sky for many centuries to establish a better understanding for our universe and solar system. As part of their observations, astronomers characterize celestial bodies by fundamental properties such as mass, motion, and composition in order to provide further insight about the objects in question. As technology and science have evolved, the methods for measuring these properties have become more precise and accurate. One such methodology is known as spectroscopy, and it is a significant tool for observational astronomy. In this paper, we shall describe how we used astronomical spectroscopy to determine orbital and rotational …


Extended Gamma Analysis Of Snr G330.2 + 1.0, Abagael Barba, John W. Hewitt Apr 2020

Extended Gamma Analysis Of Snr G330.2 + 1.0, Abagael Barba, John W. Hewitt

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

Analyzing gamma rays is an important aspect of modern astronomy and astrophysics, for they are the most powerful bands of energy on the electromagnetic spectrum. Comprehending gamma rays allows for deeper understanding of countless phenomena within our universe, such as cosmic rays. Cosmic rays are high energy particles thought to be formed via extremely violent explosions within our universe. These accelerated particles mirror conditions present in a supernova. A supernova is what occurs when a star at least 8 times as massive as our sun reaches the end of its lifespan and bursts. These explosions are the most powerful events …


Host-Galaxy Morphology Of 14 Local Active Galaxies As Imaged By The Hubble Space Telescope, Tomas Henry Snyder Mar 2020

Host-Galaxy Morphology Of 14 Local Active Galaxies As Imaged By The Hubble Space Telescope, Tomas Henry Snyder

Physics

Active galactic nuclei (AGNs) are galaxies with super-massive black holes, that are undergoing accretion, at their centers. The study of these objects provides us with a deeper understanding of how the black holes evolved along with their host galaxies since black hole mass is highly correlated with bulge mass. A sample of 66 AGNs were imaged using the Hubble Space Telescope (HST) and 14 of those are analyzed in this paper to determine their structure, bulge luminosity, and bulge type. The program GALFIT is implemented to determine these parameters, that will be used in further research in the future. These …


A Writing Intensive Upper Division Astrophysics/Planetary Science Course, Laura M. Woodney Feb 2020

A Writing Intensive Upper Division Astrophysics/Planetary Science Course, Laura M. Woodney

Q2S Enhancing Pedagogy

This poster describes the major writing components of an upper division Astronomy or Planetary Science course. These components are intended to be integrated throughout the semester along with the content of the course. The papers the instructor chooses for the scaffolded assignments should compliment/enhance the content the students are learning in the course. This project used the "Backwards Design" method from Bean (2011, citation in poster): where the instructor first identifies the final project, determines what challenges the students will encounter attempting to do that project, and then builds scaffolded assignments intended to address each of these challenges. This presentation …


Preparing A Database Of Extremely High Velocity Outflows In Quasars, Griffin Kowash, Carla P. Quintero, Sean S. Haas, Paola Rodriguez Hidalgo Sep 2019

Preparing A Database Of Extremely High Velocity Outflows In Quasars, Griffin Kowash, Carla P. Quintero, Sean S. Haas, Paola Rodriguez Hidalgo

IdeaFest: Interdisciplinary Journal of Creative Works and Research from Cal Poly Humboldt

No abstract provided.


A Likelihood Search For Low-Mass Dark Matter Via Inelastic Scattering In Supercdms, Daniel Jardin Aug 2019

A Likelihood Search For Low-Mass Dark Matter Via Inelastic Scattering In Supercdms, Daniel Jardin

Physics Theses and Dissertations

An abundance of evidence suggests that most of the Universe is composed of nonluminous matter. This "dark matter” is believed to be a new elementary particle and experiments around the world are attempting to directly detect rare collisions with terrestrial detectors.

The properties of dark matter have yet to be identified, thus efforts are ongoing to explore a range of possible masses and interaction cross-sections. For the latter, experiments can increase exposure by scaling up the detector mass and operating for a longer time. To search for dark matter with less mass than a nucleon, new technologies and analysis techniques …


Identified Flying Objects: A Multidisciplinary Scientific Approach To The Ufo Phenomenon, Dr. Michael P. Masters Jan 2019

Identified Flying Objects: A Multidisciplinary Scientific Approach To The Ufo Phenomenon, Dr. Michael P. Masters

Interdisciplinary Arts and Sciences Books

Identified Flying Objects cautiously examines the premise that ‘UFOs’ & ‘Aliens’ are simply our distant human descendants, returning from the future to study their own hominin evolutionary past. This text challenges readers to consider new possibilities while cultivating conversations about our ever-evolving understanding of time & time travel.


Large Transverse Momentum In Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order, B. Wang, J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato Jan 2019

Large Transverse Momentum In Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order, B. Wang, J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato

Physics Faculty Publications

Motivated by recently observed tension between O(α2s) calculations of very large transverse momentum dependence in both semi-inclusive deep inelastic scattering and Drell-Yan scattering, we repeat the details of the calculation through an O(α2s) transversely differential cross section. The results confirm earlier calculations, and provide further support to the observation that tension exists with current parton distribution and fragmentation functions.


Measurement Of Nuclear Transparency Ratios For Protons And Neutrons, M. Duer, O. Hen, E. Piasetzky, L. B. Weinstein, A. Schmidt, I. Korover, E. O. Cohen, H. Hakobyan, S. Adhikari, G. Angelini, H. Avakian, C. Ayerbe Gayoso, L. Barion, M. Battaglieri, A. Beck, I. Bedlinski, A. S. Biselli, S. Boiarinov, W. J. Briscoe, X. Zheng, Et Al., The Clas Collaboration Jan 2019

Measurement Of Nuclear Transparency Ratios For Protons And Neutrons, M. Duer, O. Hen, E. Piasetzky, L. B. Weinstein, A. Schmidt, I. Korover, E. O. Cohen, H. Hakobyan, S. Adhikari, G. Angelini, H. Avakian, C. Ayerbe Gayoso, L. Barion, M. Battaglieri, A. Beck, I. Bedlinski, A. S. Biselli, S. Boiarinov, W. J. Briscoe, X. Zheng, Et Al., The Clas Collaboration

Physics Faculty Publications

This paper presents, for the first time, measurements of neutron transparency ratios for nuclei relative to C measured using the (e, e'n) reaction, spanning measured neutron momenta of 1.4 to 2.4 GeV/c. The transparency ratios were extracted in two kinematical regions, corresponding to knockout of mean-field nucleons and to the breakup of Short-Range Correlated nucleon pairs. The extracted neutron transparency ratios are consistent with each other for the two measured kinematical regions and agree with the proton transparencies extracted from new and previous (e, e'p) measurements, including those from neutron-rich nuclei such as lead. The data also agree with and …


What Causes Black Holes To Spin?, Mac B. Selesnick Jan 2019

What Causes Black Holes To Spin?, Mac B. Selesnick

Senior Projects Spring 2019

Black holes are recently at the cutting edge of cosmological and astrophysical research. Both experiment and theory are leading to surprising conclusions on the physical properties of black holes and their affects on space and time. In this project, I set out to explore the origin and mechanics of a black hole's spin, that is, its internal angular momentum. What causes a black hole to spin in the first place is rich and nuanced. In order to make this project accessible and focused I explore the process of a minor merger, a collision between two black holes, one large and …


The Invisible Sun: Building A Radio Interferometer Telescope, Isobel Curtin Jan 2019

The Invisible Sun: Building A Radio Interferometer Telescope, Isobel Curtin

Senior Projects Spring 2019

When we think of astronomy, we often associate the word implicitly with observing astronomical bodies with our own eyes, or from a signal collected in the visible light range. However, there is more information we can collect from these bodies when observing them using other kinds of light, unseen to the naked eye. Radio astronomy is an important tool in an astronomer’s toolkit, and can help us image hidden parts of the universe. Recently, radio astronomy was used to directly image a black hole in the center of a nearby galaxy for the first time!

This projects aims to further …


The Impact Of Hii Regions On The Interstellar Medium Of Our Galaxy, Matteo Luisi Jan 2019

The Impact Of Hii Regions On The Interstellar Medium Of Our Galaxy, Matteo Luisi

Graduate Theses, Dissertations, and Problem Reports

The interstellar medium (ISM) of our Galaxy contains low-density diffuse ionized gas known as the warm ionized medium (WIM). O- and B-type stars emit large amounts of ionizing radiation and it is believed that a fraction of this radiation escapes from their fully ionized HII regions and into the ISM where it is responsible for maintaining the ionization of the WIM. Here we aim to better understand how the radiation produced by OB stars is able to leak from the HII regions, how the radiation field changes during this process, and how the radiation affects the ambient ISM. Using Green …


Exploring The Diffuse Neutral Hydrogen In And Around Nearby Galaxies, Amy Sardone Jan 2019

Exploring The Diffuse Neutral Hydrogen In And Around Nearby Galaxies, Amy Sardone

Graduate Theses, Dissertations, and Problem Reports

We explore the environment of 36 nearby galaxies in neutral hydrogen (H I) as part of the MeerKAT H I Observations of Nearby Galactic Objects; Observing Southern Emitters (MHONGOOSE) survey with the Robert C. Byrd Green Bank Telescope (GBT), and the Imaging Galaxies Intergalactic and Nearby En- vironment (IMAGINE) survey with the Parkes Radio Telescope. We obtained deep observations of each of these galaxies, reaching column density detection sensitivities as low as NHI ∼ 1e17 cm^−2, which allowed us to quantify the amount of diffuse H I in both samples of galaxies. This allows us to search for evidence of …


The Encyclopedia Of Neutrosophic Researchers - Vol. 3, Florentin Smarandache Jan 2019

The Encyclopedia Of Neutrosophic Researchers - Vol. 3, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: …