Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Simulation

Applied Mathematics

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 44

Full-Text Articles in Physical Sciences and Mathematics

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley May 2024

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley

Dissertations & Theses (Open Access)

The Monte Carlo particle simulator TOPAS, the multiphysics solver COMSOL., and

several analytical radiation transport methods were employed to perform an in-depth proof-ofconcept

for a high dose rate, high precision converging beam small animal irradiation platform.

In the first aim of this work, a novel carbon nanotube-based compact X-ray tube optimized for

high output and high directionality was designed and characterized. In the second aim, an

optimization algorithm was developed to customize a collimator geometry for this unique Xray

source to simultaneously maximize the irradiator’s intensity and precision. Then, a full

converging beam irradiator apparatus was fit with a multitude …


Numerical Design And Optimization Of Near-Infrared Band- Pass Filter, Hafiza Syeeda Faiza, Ghazi Aman Nowsherwan, Basem A. Abu Izneid, Muhammad Azhar, Saira Riaz, Syed Sajjad Hussain, Saira Ikram, Mohsin Khan, Shahzad Naseem, Mohammad Kanan, Ibrahim M. Mansour Jul 2023

Numerical Design And Optimization Of Near-Infrared Band- Pass Filter, Hafiza Syeeda Faiza, Ghazi Aman Nowsherwan, Basem A. Abu Izneid, Muhammad Azhar, Saira Riaz, Syed Sajjad Hussain, Saira Ikram, Mohsin Khan, Shahzad Naseem, Mohammad Kanan, Ibrahim M. Mansour

Applied Mathematics & Information Sciences

Band-pass filters functioning in the near-infrared (IR) range are desired for laser technology, multi-photon fluorescence, and IR imaging applications. In this study, we have designed four band-pass filters in the near Infrared spectrum (900-1200 nm) by vertically stacking different high and low-index materials. The band-pass filters are modelled by Essential Macleod software with different thicknesses. The layer’s thicknesses were optimized in such a way to provide the negligible reflectance and maximum transmission on the front side. All the simulated band-pass filters exhibit high transmittance, but TiO2/Al2O3 and Ta2O5/Al2O3 outperforms other modelled structure in terms of performance due to the better …


Hydrodynamic And Physicochemical Interactions Between An Active Janus Particle And An Inactive Particle, Jessica S. Rosenberg Jun 2023

Hydrodynamic And Physicochemical Interactions Between An Active Janus Particle And An Inactive Particle, Jessica S. Rosenberg

Dissertations, Theses, and Capstone Projects

Active matter is an area of soft matter science in which units consume energy and turn it into autonomous motion. Groups of these units – whether flocks of birds, bacterial colonies, or even collections of synthetically-made active particles – may exhibit complex behavior on large scales. While the large-scale picture is of great importance, so is the microscopic scale. Studying the individual particles that make up active matter will allow us to understand how they move, and whether and under what circumstances their activity can be controlled.

Here we delve into the world of active matter by studying colloidal-sized (100 …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Quantum Computing And Its Applications In Healthcare, Vu Giang Jan 2023

Quantum Computing And Its Applications In Healthcare, Vu Giang

OUR Journal: ODU Undergraduate Research Journal

This paper serves as a review of the state of quantum computing and its application in healthcare. The various avenues for how quantum computing can be applied to healthcare is discussed here along with the conversation about the limitations of the technology. With more and more efforts put into the development of these computers, its future is promising with the endeavors of furthering healthcare and various other industries.


Modeling Vascular Diffusion Of Oxygen In Breast Cancer, Tina Giorgadze Jan 2023

Modeling Vascular Diffusion Of Oxygen In Breast Cancer, Tina Giorgadze

Senior Projects Spring 2023

Oxygen is a vital nutrient necessary for tumor cells to survive and proliferate. Oxygen is diffused from our blood vessels into the tissue, where it is consumed by our cells. This process can be modeled by partial differential equations with sinks and sources. This project focuses on adding an oxygen diffusion module to an existing 3D agent-based model of breast cancer developed in Dr. Norton’s lab. The mathematical diffusion module added to an existing agent-based model (ABM) includes deriving the 1-dimensional and multi-dimensional diffusion equations, implementing 2D and 3D oxygen diffusion models into the ABM, and numerically evaluating those equations …


Machine Learning Model Comparison And Arma Simulation Of Exhaled Breath Signals Classifying Covid-19 Patients, Aaron Christopher Segura Aug 2022

Machine Learning Model Comparison And Arma Simulation Of Exhaled Breath Signals Classifying Covid-19 Patients, Aaron Christopher Segura

Mathematics & Statistics ETDs

This study compared the performance of machine learning models in classifying COVID-19 patients using exhaled breath signals and simulated datasets. Ground truth classification was determined by the gold standard Polymerase Chain Reaction (PCR) test results. A residual bootstrapped method generated the simulated datasets by fitting signal data to Autoregressive Moving Average (ARMA) models. Classification models included neural networks, k-nearest neighbors, naïve Bayes, random forest, and support vector machines. A Recursive Feature Elimination (RFE) study was performed to determine if reducing signal features would improve the classification models performance using Gini Importance scoring for the two classes. The top 25% of …


Using An Analytical Approach Of The Kuramoto Model To Stimulate 3d Neural Activity Of The Stomach, Morteza Al Rabya Aug 2021

Using An Analytical Approach Of The Kuramoto Model To Stimulate 3d Neural Activity Of The Stomach, Morteza Al Rabya

Undergraduate Student Research Internships Conference

No abstract provided.


Applying Deep Learning To The Ice Cream Vendor Problem: An Extension Of The Newsvendor Problem, Gaffar Solihu Aug 2021

Applying Deep Learning To The Ice Cream Vendor Problem: An Extension Of The Newsvendor Problem, Gaffar Solihu

Electronic Theses and Dissertations

The Newsvendor problem is a classical supply chain problem used to develop strategies for inventory optimization. The goal of the newsvendor problem is to predict the optimal order quantity of a product to meet an uncertain demand in the future, given that the demand distribution itself is known. The Ice Cream Vendor Problem extends the classical newsvendor problem to an uncertain demand with unknown distribution, albeit a distribution that is known to depend on exogenous features. The goal is thus to estimate the order quantity that minimizes the total cost when demand does not follow any known statistical distribution. The …


The Food Truck Problem, Supply Chains And Extensions Of The Newsvendor Problem, Dennis Quayesam Aug 2021

The Food Truck Problem, Supply Chains And Extensions Of The Newsvendor Problem, Dennis Quayesam

Electronic Theses and Dissertations

Inventory control is important to ensuring sufficient quantities of items are available tomeet demands of customers. The Newsvendor problem is a model used in Operations Research to determine optimal inventory levels for fulfilling future demands. Our study extends the newsvendor problem to a food truck problem. We used simulation to show that the food truck does not reduce to a newsvendor problem if demand depends on exogenous factors such temperature, time etc. We formulate the food truck problem as a multi-product multi-period linear program and found the dual for a single item. We use Discrete Event Simulation to solve the …


Global Optimization Algorithms For Image Registration And Clustering, Cuicui Zheng Aug 2020

Global Optimization Algorithms For Image Registration And Clustering, Cuicui Zheng

Dissertations

Global optimization is a classical problem of finding the minimum or maximum value of an objective function. It has applications in many areas, such as biological image analysis, chemistry, mechanical engineering, financial analysis, deep learning and image processing. For practical applications, it is important to understand the efficiency of global optimization algorithms. This dissertation develops and analyzes some new global optimization algorithms and applies them to practical problems, mainly for image registration and data clustering.

First, the dissertation presents a new global optimization algorithm which approximates the optimum using only function values. The basic idea is to use the points …


Modeling And Analysis Of The Impact Of Vocational Education On The Unemployment Rate In Nigeria, Abayomi Ayoade, Opeyemi Odetunde, Bidemi Falodun Jun 2020

Modeling And Analysis Of The Impact Of Vocational Education On The Unemployment Rate In Nigeria, Abayomi Ayoade, Opeyemi Odetunde, Bidemi Falodun

Applications and Applied Mathematics: An International Journal (AAM)

Unemployment is a major determinant of a weak economy and a good measure of living standard in a country. Nigeria is faced with the problem of unemployment at present. By that, a mathematical model is formulated to investigate the effect of vocational education on the unemployment challenges in Nigeria. The model is tested for the basic requirements of a good mathematical model. The equilibrium analysis of the model is conducted and both the unemployment-free and the unemployment endemic equilibria are obtained. The threshold for the implementation success of the vocational education program is also derived following the approach of epidemic …


Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah May 2020

Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah

Honors Scholar Theses

Many current algorithms and approaches in autonomous driving attempt to solve the "trajectory generation" or "trajectory following” problems: given a target behavior (e.g. stay in the current lane at the speed limit or change lane), what trajectory should the vehicle follow, and what inputs should the driving agent apply to the throttle and brake to achieve this trajectory? In this work, we instead focus on the “behavior planning” problem—specifically, should an autonomous vehicle change lane or keep lane given the current state of the system?

In addition, current theory mainly focuses on single-vehicle systems, where vehicles do not communicate with …


Environmental Balance Through Optimal Control On Pollutants, Nita H. Shah, Foram A. Thakkar, Moksha H. Satia Jun 2019

Environmental Balance Through Optimal Control On Pollutants, Nita H. Shah, Foram A. Thakkar, Moksha H. Satia

Applications and Applied Mathematics: An International Journal (AAM)

Pollution, which is a very common term has been divided as primary pollutants and secondary pollutants. Primary pollutants are those who results directly from some process whereas secondary pollutants are caused due to intermixing and reaction of primary pollutants. These pollutants result into acid rain. In this paper, a mathematical model has been developed to study the environmental impact due to acid rain. Pollutants such as primary and secondary pollutants are the causes of acid rain. Control in terms of gases emitted by factories, smog, burning of coal and fossil fuels have been applied on primary pollutants, secondary pollutants and …


Paper Structure Formation Simulation, Tyler R. Seekins May 2019

Paper Structure Formation Simulation, Tyler R. Seekins

Electronic Theses and Dissertations

On the surface, paper appears simple, but closer inspection yields a rich collection of chaotic dynamics and random variables. Predictive simulation of paper product properties is desirable for screening candidate experiments and optimizing recipes but existing models are inadequate for practical use. We present a novel structure simulation and generation system designed to narrow the gap between mathematical model and practical prediction. Realistic inputs to the system are preserved as randomly distributed variables. Rapid fiber placement (~1 second/fiber) is achieved with probabilistic approximation of chaotic fluid dynamics and minimization of potential energy to determine flexible fiber conformations. Resulting digital packed …


Estimation Of The Burr Xii-Exponential Distribution Parameters, Gholamhossein Yari, Zahra Tondpour Jun 2018

Estimation Of The Burr Xii-Exponential Distribution Parameters, Gholamhossein Yari, Zahra Tondpour

Applications and Applied Mathematics: An International Journal (AAM)

The Burr XII distribution is one of the most important distributions in Survival analysis. In this article, we introduce the new wider Burr XII-G family of distributions. A special model in the new family called Burr XII-exponential distribution that has constant, decreasing and unimodal hazard rate functions is investigated. We discuss the estimation of this distribution parameters by maximum likelihood, three modifications of maximum likelihood and Bayes methods. In Bayes method, we use the uniform, triangular and Burr XII-uniform priors for posterior analysis and obtain Bayes estimations under two different loss functions. We obtain two approximations of the Bayes estimations, …


A Computational Model Of Team-Based Dynamics In The Workplace: Assessing The Impact Of Incentive-Based Motivation On Productivity, Josef Di Pietrantonio May 2018

A Computational Model Of Team-Based Dynamics In The Workplace: Assessing The Impact Of Incentive-Based Motivation On Productivity, Josef Di Pietrantonio

Electronic Theses and Dissertations

Large organizations often divide workers into small teams for the completion of essential tasks. In an effort to maximize the number of tasks completed over time, it is common practice for organizations to hire workers with the highest level of education and experience. However, despite capable workers being hired, the ability of teams to complete tasks may suffer if the workers' individual motivational needs are not satisfied.

To explore the impact of incentive-based motivation on the success of team-based organizations, we developed an agent-based model that stochastically simulates the proficiency of 100 workers with varying abilities and motive profiles to …


Understanding The Nature Of Nanoscale Wetting Through All-Atom Simulations, Oliver Evans Jan 2018

Understanding The Nature Of Nanoscale Wetting Through All-Atom Simulations, Oliver Evans

Williams Honors College, Honors Research Projects

The spreading behavior of spherical and cylindrical water droplets between 30Å and 100Å in radius on a sapphire surface is investigated using all-atom molecular dynamics simulations for durations on the order of tens of nanoseconds. A monolayer film develops rapidly and wets the surface, while the bulk of the droplet spreads on top of the monolayer, maintaining the shape of a spherical cap. Unlike previous simulations in the literature, the bulk radius is found to increase to a maximum value and receed as the monolayer continues to expand. Simple time and droplet size dependence is observed for monolayer radius and …


Electrodynamical Modeling For Light Transport Simulation, Michael G. Saunders May 2017

Electrodynamical Modeling For Light Transport Simulation, Michael G. Saunders

Undergraduate Honors Theses

Modernity in the computer graphics community is characterized by a burgeoning interest in physically based rendering techniques. That is to say that mathematical reasoning from first principles is widely preferred to ad hoc, approximate reasoning in blind pursuit of photorealism. Thereby, the purpose of our research is to investigate the efficacy of explicit electrodynamical modeling by means of the generalized Jones vector given by Azzam [1] and the generalized Jones matrix given by Ortega-Quijano & Arce-Diego [2] in the context of stochastic light transport simulation for computer graphics. To augment the status quo path tracing framework with such a modeling …


Neural Network Predictions Of A Simulation-Based Statistical And Graph Theoretic Study Of The Board Game Risk, Jacob Munson Jan 2017

Neural Network Predictions Of A Simulation-Based Statistical And Graph Theoretic Study Of The Board Game Risk, Jacob Munson

Murray State Theses and Dissertations

We translate the RISK board into a graph which undergoes updates as the game advances. The dissection of the game into a network model in discrete time is a novel approach to examining RISK. A review of the existing statistical findings of skirmishes in RISK is provided. The graphical changes are accompanied by an examination of the statistical properties of RISK. The game is modeled as a discrete time dynamic network graph, with the various features of the game modeled as properties of the network at a given time. As the network is computationally intensive to implement, results are produced …


Simulating The Spread Of The Common Cold, R. Corban Harwood Nov 2016

Simulating The Spread Of The Common Cold, R. Corban Harwood

Faculty Publications - Department of Mathematics

This modeling scenario guides students to simulate and investigate the spread of the common cold in a residence hall. An example floor plan is given, but the reader is encouraged to use a more relevant example. In groups, students run repeated simulations, collect data, derive a differential equation model, solve that equation, estimate parameter values by hand and through regression, visually evaluate the consistency of the model with their data, and present their results to the class.


Mathematical Models For Infectious Disease Transmission With Stochastic Simulation Of Measles Outbreaks, Valerie Welty Apr 2016

Mathematical Models For Infectious Disease Transmission With Stochastic Simulation Of Measles Outbreaks, Valerie Welty

Honors College Theses

As they are the leading cause of death among children and adolescents worldwide, it is of extreme importance to control the spread of infectious diseases. Information gained from mathematical modeling of these events often proves quite useful in establishing policy decisions to accomplish this goal. Human behavior, however, is quite difficult to recreate when using equations with pre-determined results, such as deterministic differential equations often used with epidemic models. Because of this, the focus of the research was to create a simulation of an outbreak, specifically of measles, by using an imaginary population experiencing simulated stochastic events on a discrete …


The Role Of Mathematical Modeling In Designing And Evaluating Antimicrobial Stewardship Programs, Lester Caudill, Joanna R. Wares Apr 2016

The Role Of Mathematical Modeling In Designing And Evaluating Antimicrobial Stewardship Programs, Lester Caudill, Joanna R. Wares

Department of Math & Statistics Faculty Publications

Antimicrobial agent effectiveness continues to be threatened by the rise and spread of pathogen strains that exhibit drug resistance. This challenge is most acute in healthcare facilities where the well-established connection between resistance and sub-optimal antimicrobial use has prompted the creation of antimicrobial stewardship programs (ASPs). Mathematical models offer tremendous potential for serving as an alternative to controlled human experimentation for assessing the effectiveness of ASPs. Models can simulate controlled randomized experiments between groups of virtual patients, some treated with the ASP measure under investigation, and some without. By removing the limitations inherent in human experimentation, including health risks, study …


Stochastic Models For Plant Microtubule Self-Organization And Structure, Ezgi Can Eren, Ram Dixit, Natarajan Gautam Nov 2015

Stochastic Models For Plant Microtubule Self-Organization And Structure, Ezgi Can Eren, Ram Dixit, Natarajan Gautam

Biology Faculty Publications & Presentations

One of the key enablers of shape and growth in plant cells is the cortical microtubule (CMT) system, which is a polymer array that forms an appropriately-structured scaffolding in each cell. Plant biologists have shown that stochastic dynamics and simple rules of interactions between CMTs can lead to a coaligned CMT array structure. However, the mechanisms and conditions that cause CMT arrays to become organized are not well understood. It is prohibitively time-consuming to use actual plants to study the effect of various genetic mutations and environmental conditions on CMT self-organization. In fact, even computer simulations with multiple replications are …


Tropical Cyclone Wind Hazard Assessment For Southeast Part Of Coastal Region Of China, Sihan Li Aug 2015

Tropical Cyclone Wind Hazard Assessment For Southeast Part Of Coastal Region Of China, Sihan Li

Electronic Thesis and Dissertation Repository

Tropical cyclone (TC) or typhoon wind hazard and risk are significant for China. The return period value of the maximum typhoon wind speed is used to characterize the typhoon wind hazard and assign wind load in building design code. Since the historical surface observations of typhoon wind speed are often scarce and of short period, the typhoon wind hazard assessment is often carried out using the wind field model and TC track model. For a few major cities in the coastal region of mainland China, simple or approximated wind field models and a circular subregion method (CSM) have been used …


Generating Random Vectors Using Transformation With Multiple Roots And Its Applications, Qidi Peng, Henry Schellhorn, Lu Zhu Jun 2015

Generating Random Vectors Using Transformation With Multiple Roots And Its Applications, Qidi Peng, Henry Schellhorn, Lu Zhu

Applications and Applied Mathematics: An International Journal (AAM)

An approach is proposed to generate random vectors using transformation with multiple roots. This approach generalizes the one-dimensional inverse transformation with multiple roots method to higher dimensions, i.e., to random vectors with or without densities. In this approach, multiple roots of the transformation and probabilities of selecting each of the roots are derived. The strategies for constructing such a transformation are discussed and several examples are presented to motivate this simulation approach.


Active Tile Self-Assembly And Simulations Of Computational Systems, Daria Karpenko Apr 2015

Active Tile Self-Assembly And Simulations Of Computational Systems, Daria Karpenko

USF Tampa Graduate Theses and Dissertations

Algorithmic self-assembly has been an active area of research at the intersection of computer science, chemistry, and mathematics for almost two decades now, motivated by the natural self-assembly mechanism found in DNA and driven by the desire for precise control of nanoscale material manufacture and for the development of nanocomputing and nanorobotics. At the theoretical core of this research is the Abstract Tile Assembly Model (aTAM), the original abstract model of DNA tile self-assembly. Recent advancements in DNA nanotechnology have been made in developing strand displacement mechanisms that could allow DNA tiles to modify themselves during the assembly process by …


A Semiparametric Estimation For Regression Functions In The Partially Linear Autoregressive Time Series Model, R. Farnoosh, M. Hajebi, S. J. Mortazavi Dec 2014

A Semiparametric Estimation For Regression Functions In The Partially Linear Autoregressive Time Series Model, R. Farnoosh, M. Hajebi, S. J. Mortazavi

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, a semiparametric method is proposed for estimating regression function in the partially linear autoregressive time series model . Here, we consider a combination of parametric forms and nonlinear functions, in which the errors are independent. Semiparametric and nonparametric curve estimation provides a useful tool for exploring and understanding the structure of a nonlinear time series data set to make for a more efficient study in the partially linear autoregressive model. The unknown parameters are estimated using the conditional nonlinear least squares method, and the nonparametric adjustment is also estimated by defining and minimizing the local L2 -fitting …


Monte Carlo Simulation: When Should A Contestant Stop Spinning?, Gregory Horn Jul 2014

Monte Carlo Simulation: When Should A Contestant Stop Spinning?, Gregory Horn

All Student Theses

Every episode of the popular game show The Price Is Right contains two rounds called The Showcase Showdown or The Big Wheel. During these rounds, three contestants spin a large wheel that consists of monetary values from five cents through one dollar in 5 cent increments. The object of this game is to get closest to one dollar without going over in one or a combination of two spins. The two winners of these rounds get to compete for the most valuable prizes at the end of each show. Monte Carlo simulation will be used to find the range of …


Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano Jun 2014

Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano

Master's Theses

Using an explicit integration method in physically based animations has many advantages including conceptual and computational simplicity, however, it re- quires small time steps to ensure low numerical instability. Simulations with large numbers of individually interacting components such as cloth, hair, and fluid models, are limited by the sections of particles most susceptible to error. This results in the need for smaller time steps than required for the majority of the system. These sections can be diverse and dynamic, quickly changing in size and location based on forces in the system. Identifying and handling these trou- blesome sections could allow …