Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

A General Quantum Mechanical Method To Predict Positron Spectroscopy, Paul E. Adamson Sep 2007

A General Quantum Mechanical Method To Predict Positron Spectroscopy, Paul E. Adamson

Theses and Dissertations

The nuclear-electronic orbital (NEO) method was modified and extended to positron systems. NEO - second-order Moeller-Plesset perturbation (MP2) energies and annihilation rates were calculated for the positronium hydride (PsH) system, and the effects of basis set size on correlation energies captured with the NEO-MP2 and NEO-full configuration interaction (FCI) methods are compared and discussed. Equilibrium geometries and vibrational energy levels were computed for the LiX and e+LiX (X = H, F, Cl) systems at the MP2 and NEO-MP2 levels. It was found that anharmonicity plays a significant role, specifically in the differences between the vibrational energy levels of …


Quantum Mechanical Calculations Of Monoxides Of Silicon Carbide Molecules, John W. Roberts Jr. Mar 2003

Quantum Mechanical Calculations Of Monoxides Of Silicon Carbide Molecules, John W. Roberts Jr.

Theses and Dissertations

Modern semiconductor devices are principally made using the element silicon. In recent years, silicon carbide (SiC), with its wide band-gap, high thermal conductivity, and radiation resistance, has shown prospects as a semiconductor material for use in high temperature and radiation environments such as jet engines and satellites. A limiting factor in the performance of many SiC semiconductor components is the presence of lattice defects formed at oxide dielectric junctions during processing. Recent theoretical work has used small quantum mechanical systems embedded in larger molecular mechanics structures to attempt to better understand SiC surfaces and bulk materials and their oxidation. This …


Building Blocks For Time-Resolved Laser Emission In Mid-Infrared Quantum Well Lasers, Gabriel D. Mounce Mar 2003

Building Blocks For Time-Resolved Laser Emission In Mid-Infrared Quantum Well Lasers, Gabriel D. Mounce

Theses and Dissertations

The objective of this research is to improve the performance of mid-infrared semiconductor quantum-well lasers. Lasers operating in the mid-infrared are useful for many Air Force applications which include infrared (IR) countermeasures in particular. Countermeasure applications require lasers that are compact, and able to emit at high powers while operating at room temperature. Limits to power increases are seen in the transverse modal development of laser oscillation. These modes typically form in the waveguiding active region contributing to the laser output. However, competing modes outside of this region also develop when the confining structural layers have the right characteristics. These …


Reactive Quantum Scattering In Two Dimensions, Roy S. Calfas Dec 1997

Reactive Quantum Scattering In Two Dimensions, Roy S. Calfas

Theses and Dissertations

In an effort to develop a more efficient time dependent approach for calculating scattering matrix elements, absorbing boundary conditions are combined together with the channel packet method. As an introduction to scattering, scattering matrix elements are presented for a one-dimensional square well and a one-dimensional potential consisting of a Gaussian well with symmetric Gaussian barriers. Next, the combination of the channel packet method together with absorbing boundary conditions yields an order of magnitude savings in the time necessary to compute the correlation function for the collinear H+H