Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

Understanding The Spin-Glass State Through The Magnetic Properties Of Mn-Doped Znte, A. Alcantara, S. Barrett, D. Matev, I. Miotkowski, A. K. Ramdas, T. Pekarek, J. T. Haraldsen Apr 2020

Understanding The Spin-Glass State Through The Magnetic Properties Of Mn-Doped Znte, A. Alcantara, S. Barrett, D. Matev, I. Miotkowski, A. K. Ramdas, T. Pekarek, J. T. Haraldsen

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

Magnetic measurements on the spin-glass behavior in the bulk II-VI diluted magnetic semiconductor (DMS) ZnMnTe were made on two crystals of concentrations x = 0.43 and 0.55 taken from the same boule. Magnetization and density functional theory studies have shown paramagnetic behavior in both samples between 30 and 400 K. Below 30 K, there is a prominent peak at Tc = 15 and 23.6 K for concentrations x = 0.43 and 0.55, respectively. The splitting of the field cooled (FC) and zero field cooled (ZFC) data below this peak is indicative of a transition to a spin-glass state at low …


Extended Gamma Analysis Of Snr G330.2 + 1.0, Abagael Barba, John W. Hewitt Apr 2020

Extended Gamma Analysis Of Snr G330.2 + 1.0, Abagael Barba, John W. Hewitt

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

Analyzing gamma rays is an important aspect of modern astronomy and astrophysics, for they are the most powerful bands of energy on the electromagnetic spectrum. Comprehending gamma rays allows for deeper understanding of countless phenomena within our universe, such as cosmic rays. Cosmic rays are high energy particles thought to be formed via extremely violent explosions within our universe. These accelerated particles mirror conditions present in a supernova. A supernova is what occurs when a star at least 8 times as massive as our sun reaches the end of its lifespan and bursts. These explosions are the most powerful events …


Investigation Of The Obscure Spin State Of Ti-Doped Cdse, J. Dimuna, T. Boyett, I. Miotkowski, A. K. Ramdas, T. Pekarek, J. T. Haraldsen Apr 2020

Investigation Of The Obscure Spin State Of Ti-Doped Cdse, J. Dimuna, T. Boyett, I. Miotkowski, A. K. Ramdas, T. Pekarek, J. T. Haraldsen

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

Using computational and experimental techniques, we examine the nature of the 2+ oxidation of Ti-doped CdSe. Through stoichiometry and confirmed through magnetization measurements, the weakly-doped material of Cd1-xTixSe (x = 0.0043) shows the presence of a robust spin-1 magnetic state of Ti, which is indicative of a 2+ oxidation state. Given the obscure nature of the Ti2+ state, we investigate the electronic and magnetic states using density functional theory. Using a generalized gradient approximation with an onsite potential, we determine the electronic structure, magnetic moment density, and optical properties for a supercell of CdSe with an ultra-low concentration of Ti. …


Investigating The Substrate Specificity Of Prmt1 Using A Plate Based Screening Method, Tina Sawatzky, Sarah Mann, Bryan Knuckley Apr 2020

Investigating The Substrate Specificity Of Prmt1 Using A Plate Based Screening Method, Tina Sawatzky, Sarah Mann, Bryan Knuckley

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

Enzymes are biological catalysts that speed up the rate of a reaction by lowering the activation energy and converting substrate (reactant) to product more expeditiously. Enzymes have a high degree of specificity and will only catalyze selective reactions by targeting particular substrates. In mammals, there exists a family of 11 enzymes, PRMT’s (Protein Arginine Methyl transferase), that target protein arginine for post translational methylation on the guanidino nitrogen of the residue. They occur naturally as Type I, II and III and can administer asymmetric di-methylation (ADMA), symmetric dimethylation (SDMA) and monomethylation, respectively. The focal point of this project is to …


Identification Of Histone H4-Based Peptoids As Inhibitors Of Prmt1, Megan Demart, Molly Dubose, Sarah Mann, Corey Causey Phd, Bryan Knuckley Phd Apr 2020

Identification Of Histone H4-Based Peptoids As Inhibitors Of Prmt1, Megan Demart, Molly Dubose, Sarah Mann, Corey Causey Phd, Bryan Knuckley Phd

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

Protein Arginine Methyltransferases (PRMTs) are a family of 11 mammalian enzymes characterized by the post-translational methylation of arginine residues in the histone tail. The majority of the 11 members of the PRMT family are divided into two main types, Type I and Type II. PRMT1, the major Type I isozyme, catalyzes the formation of asymmetrically dimethylated arginine (ADMA). PRMT1 activates transcription of cancer genes. Peptoids, or poly-N-substituted glycine’s are a class of oligomers whose side chains are appended to the nitrogen atom of the peptide backbone rather than the alpha carbon. Kinetic parameters were conducted for both peptide and peptoid …


Electronic And Magnetic Order As A Function Of Doping In Mixed-Valent La1-Xsrxmn03 Thin Films, James Payne, Dakota Brown, Calleigh Brannan, Tom Pekarek, Maitri Warusawithana Apr 2020

Electronic And Magnetic Order As A Function Of Doping In Mixed-Valent La1-Xsrxmn03 Thin Films, James Payne, Dakota Brown, Calleigh Brannan, Tom Pekarek, Maitri Warusawithana

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

The rich phase diagram in mixed-valent manganites has been intensely studied in bulk crystals as a function of chemical doping. Here we study the effect of doping in La1-xSrxMnO3 thin films by varying the Sr/La ratio between samples. These thin films are grown using ozone assisted molecular beam epitaxy with carefully controlled stoichiometry for a range of doping from x = 0.0 to x = 0.5. Our electronic measurements reveal a crossover from a Mott insulator to a metallic ground state as x is increased. In the metallic ground state we observe a metal-to-insulator transition coincident with a ferromagnetic-to-paramagnetic ordering …


Improving Photon Number Resolution In Superconducting Nanowire Single-Photon Detectors With Integrated Impedance Tapers, Bladimiro E. Valbuena, Daniel F. Santavicca Apr 2020

Improving Photon Number Resolution In Superconducting Nanowire Single-Photon Detectors With Integrated Impedance Tapers, Bladimiro E. Valbuena, Daniel F. Santavicca

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

Simulations are run to optimize the ability to resolve the number of photons detected from the pulse height by a Superconducting Nanowire Single-Photon Detector (SNSPD). This is set up in a manner that features an impedance-matching transmission line taper that provides a characteristic impedance which transitions from kΩ to 50 Ω, with the taper providing an effective load impedance that outputs pulses with not only larger amplitudes but also showed a distinct separation for multi-photon events. The first part of this project tries to computationally match the experimental results obtained by our collaborators at MIT. Once these results are achieved, …


Understanding The Magnetic Interactions Of The Zig-Zag Honeycomb Lattice: Application To Rucl3, Evan Wilson, Jason T. Haraldsen Apr 2020

Understanding The Magnetic Interactions Of The Zig-Zag Honeycomb Lattice: Application To Rucl3, Evan Wilson, Jason T. Haraldsen

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

The new field of Dirac quantum matter has produced a lot of interesting theories and materials, especially in the dynamics of magnetic materials. One such material is RuCl3, which is a S = 1/2 zigzag honeycomb lattice. Through inelastic neutron scattering, this material has demonstrated spin waves with an energy scale of 1.5-8.0 meV. According to literature, RuCl3 may be the realization of a new theoretical phase of matter called a spin liquid. This materials seems to fit the profile and has been investigated using a Kitaev model. In this study, we re-examine the data for RuCl3 using a standard …


Magnetic Properties Of Mbe Grown La1/3y1/3sr1/3mno3 Thin Films And Superlattices, W. A. Ruiz, C. Kengle, J. Payne, D. Brown, W. P. Warusawithana, T. M. Pekarek Apr 2020

Magnetic Properties Of Mbe Grown La1/3y1/3sr1/3mno3 Thin Films And Superlattices, W. A. Ruiz, C. Kengle, J. Payne, D. Brown, W. P. Warusawithana, T. M. Pekarek

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

We have investigated the magnetic properties of thin films related to the standard CMR system La2/3Sr1/3MnO3 where Y substituted for 50% of the La atoms. These La1/3Y1/3Sr1/3MnO3 films were grown as a random alloy where La, Y, and Sr atoms randomly occupied the A-site or as a superlattice where each unit-cell-thick layer stacked along the crystallographic (001) direction contained only one of the atoms La, Y, and Sr occupying the A-site. One of the key magnetic features of La2/3Sr1/3MnO3 is a prominent ferromagnetic transition near 350 K. We find the substitution of La with Y suppresses this ferromagnetic transition in …


Spin-Glass Ordering In The Diluted Magnetic Semiconductor Zn1-Xmnxte, S. Barrett, T. M. Pekarek Apr 2020

Spin-Glass Ordering In The Diluted Magnetic Semiconductor Zn1-Xmnxte, S. Barrett, T. M. Pekarek

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

Magnetic measurements on the spin-glass behavior in the bulk II-VI diluted magnetic semiconductor (DMS) ZnMnTe were made on two crystals of concentrations x = 0.43 and 0.55 taken from the same boule. Magnetization and density functional theory studies have shown paramagnetic behavior in both samples between 30 and 400 K. Below 30 K, there is a prominent peak at Tc = 15 and 23.6 K for concentrations x = 0.43 and 0.55, respectively. The splitting of the field cooled (FC) and zero field cooled (ZFC) data below this peak is indicative of a transition to a spin-glass state at low …


Reduced Dimensionality Effects In Ferromagnetic Behavior In La1-Xsrxmno3, C. A. Brennan, M. P. Warusawithana, J. Payne, D. Brown, T. M. Pekarek Apr 2020

Reduced Dimensionality Effects In Ferromagnetic Behavior In La1-Xsrxmno3, C. A. Brennan, M. P. Warusawithana, J. Payne, D. Brown, T. M. Pekarek

Showcase of Osprey Advancements in Research and Scholarship (SOARS)

We study the magnetic properties of La1-xSrxMnO3 samples for concentrations x, 0 ≤ x ≤ 0.5. An analysis is done to accurately determine the transition temperature or critical temperature. Magnetic phase diagrams showing the various concentrations at different temperatures will be determined for our thin films. Using the phase diagrams for both bulk and thin film materials can show how reducing the dimensionality from the third dimension to approaching the second-dimension affects the phase diagram.


Florida Science: The Science That Makes Florida Different, Terence W. Cavanaugh Jan 2019

Florida Science: The Science That Makes Florida Different, Terence W. Cavanaugh

Secondary Level Resources

This book was created to assist students with their understanding of how science occurs in Florida. When teaching science or any subject it’s important to remember to begin with the concrete and then move to the abstract. I have found that it has helped my students when I begin by teaching science concepts in a concrete manner and expand from there. For example, when I taught about topographic maps, the students were much more successful in their learning when I started with local topographic maps that included the school and the surrounding area than with places that had mountains or …


Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner Jan 1996

Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner

Physics Faculty Research and Scholarship

Providing the tools and know-how to apply the principles of astronomy first-hand, these 43 laboratory exercises each contain an introduction that clearly shows budding astronomers why the particular topic of that lab is of interest and relevant to astronomy. About one-third of the exercises are devoted solely to observation, and no mathematics is required beyond simple high school algebra and trigonometry.Organizes exercises into six major topics—sky, optics and spectroscopy, celestial mechanics, solar system, stellar properties, and exploration and other topics—providing clear outlines of what is involved in the exercise, its purpose, and what procedures and apparatus are to be used. …