Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Machine learning

2019

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 141

Full-Text Articles in Physical Sciences and Mathematics

Cancer Risk Prediction With Whole Exome Sequencing And Machine Learning, Abdulrhman Fahad M Aljouie Dec 2019

Cancer Risk Prediction With Whole Exome Sequencing And Machine Learning, Abdulrhman Fahad M Aljouie

Dissertations

Accurate cancer risk and survival time prediction are important problems in personalized medicine, where disease diagnosis and prognosis are tuned to individuals based on their genetic material. Cancer risk prediction provides an informed decision about making regular screening that helps to detect disease at the early stage and therefore increases the probability of successful treatments. Cancer risk prediction is a challenging problem. Lifestyle, environment, family history, and genetic predisposition are some factors that influence the disease onset. Cancer risk prediction based on predisposing genetic variants has been studied extensively. Most studies have examined the predictive ability of variants in known ...


Early Detection Of Fake News On Social Media, Yang Liu Dec 2019

Early Detection Of Fake News On Social Media, Yang Liu

Dissertations

The ever-increasing popularity and convenience of social media enable the rapid widespread of fake news, which can cause a series of negative impacts both on individuals and society. Early detection of fake news is essential to minimize its social harm. Existing machine learning approaches are incapable of detecting a fake news story soon after it starts to spread, because they require certain amounts of data to reach decent effectiveness which take time to accumulate. To solve this problem, this research first analyzes and finds that, on social media, the user characteristics of fake news spreaders distribute significantly differently from those ...


Detecting Myocardial Infarctions Using Machine Learning Methods, Aniruddh Mathur Dec 2019

Detecting Myocardial Infarctions Using Machine Learning Methods, Aniruddh Mathur

Master's Projects

Myocardial Infarction (MI), commonly known as a heart attack, occurs when one of the three major blood vessels carrying blood to the heart get blocked, causing the death of myocardial (heart) cells. If not treated immediately, MI may cause cardiac arrest, which can ultimately cause death. Risk factors for MI include diabetes, family history, unhealthy diet and lifestyle. Medical treatments include various types of drugs and surgeries which can prove very expensive for patients due to high healthcare costs. Therefore, it is imperative that MI is diagnosed at the right time. Electrocardiography (ECG) is commonly used to detect MI. ECG ...


Analyze Informant-Based Questionnaire For The Early Diagnosis Of Senile Dementia Using Deep Learning, Fubao Zhu, Xiaonan Li, Daniel Mcgonigle, Haipeng Tang, Zhuo He, Chaoyang Zhang, Guang-Uei Hung, Pai-Yi Chu, Weihua Zhou Dec 2019

Analyze Informant-Based Questionnaire For The Early Diagnosis Of Senile Dementia Using Deep Learning, Fubao Zhu, Xiaonan Li, Daniel Mcgonigle, Haipeng Tang, Zhuo He, Chaoyang Zhang, Guang-Uei Hung, Pai-Yi Chu, Weihua Zhou

Faculty Publications

Objective: This paper proposes a multiclass deep learning method for the classification of dementia using an informant-based questionnaire.

Methods: A deep neural network classification model based on Keras framework is proposed in this paper. To evaluate the advantages of our proposed method, we compared the performance of our model with industry-standard machine learning approaches. We enrolled 6,701 individuals, which were randomly divided into training data sets (6030 participants) and test data sets (671 participants). We evaluated each diagnostic model in the test set using accuracy, precision, recall, and F1-Score.

Results: Compared with the seven conventional machine learning algorithms, the ...


An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza Dec 2019

An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza

Dissertations and Theses

Food wastage is a problem that affects all demographics and regions of the world. Each year, approximately one-third of food produced for human consumption is thrown away. In an effort to track and reduce food waste in the commercial sector, some companies utilize third party devices which collect data to analyze individual contributions to the global problem. These devices track the type of food wasted (such as vegetables, fruit, boneless chicken, pasta) along with the weight. Some devices also allow the user to leave the food in a kitchen container while it is weighed, so the container weight must also ...


Orbit Image Analysis Machine Learning Software Can Be Used For The Histological Quantification Of Acute Ischemic Stroke Blood Clots, Sean Fitzgerald, Shunli Wang, Daying Dai, Dennis H. Murphree Jr., Abhay Pandit, Andrew Douglas, Asim Rizvi, Ramanathan Kadirvel, Michael Gilvarry, Ray Mccarthy, Manuel Stritt, Matthew J. Gounis, Waleed Brinjikji, David F. Kallmes, Karen M. Doyle Dec 2019

Orbit Image Analysis Machine Learning Software Can Be Used For The Histological Quantification Of Acute Ischemic Stroke Blood Clots, Sean Fitzgerald, Shunli Wang, Daying Dai, Dennis H. Murphree Jr., Abhay Pandit, Andrew Douglas, Asim Rizvi, Ramanathan Kadirvel, Michael Gilvarry, Ray Mccarthy, Manuel Stritt, Matthew J. Gounis, Waleed Brinjikji, David F. Kallmes, Karen M. Doyle

Open Access Articles

Our aim was to assess the utility of a novel machine learning software (Orbit Image Analysis) in the histological quantification of acute ischemic stroke (AIS) clots. We analyzed 50 AIS blood clots retrieved using mechanical thrombectomy procedures. Following HandE staining, quantification of clot components was performed by two different methods: a pathologist using a reference standard method (Adobe Photoshop CC) and an experienced researcher using Orbit Image Analysis. Following quantification, the clots were categorized into 3 types: RBC dominant (>/=60% RBCs), Mixed and Fibrin dominant ( > /=60% Fibrin). Correlations between clot composition and Hounsfield Units density on Computed Tomography (CT) were ...


Characterizing Dryland Ecosystems Using Remote Sensing And Dynamic Global Vegetation Modeling, Abdolhamid Dashtiahangar Dec 2019

Characterizing Dryland Ecosystems Using Remote Sensing And Dynamic Global Vegetation Modeling, Abdolhamid Dashtiahangar

Boise State University Theses and Dissertations

Drylands include all terrestrial regions where the production of crops, forage, wood and other ecosystem services are limited by water. These ecosystems cover approximately 40% of the earth terrestrial surface and accommodate more than 2 billion people (Millennium Ecosystem Assessment, 2005). Moreover, the interannual variability of the global carbon budget is strongly regulated by vegetation dynamics in drylands. Understanding the dynamics of such ecosystems is significant for assessing the potential for and impacts of natural or anthropogenic disturbances and mitigation planning, and a necessary step toward enhancing the economic and social well-being of dryland communities in a sustainable manner (Global ...


Decomposing The Hamiltonian Of Quantum Circuits Using Machine Learning, Jordan Burns, Yih Sung, Colby Wight Dec 2019

Decomposing The Hamiltonian Of Quantum Circuits Using Machine Learning, Jordan Burns, Yih Sung, Colby Wight

Physics Capstone Projects

Quantum computing is one of the most promising techniques for simulating physical systems that cannot be simulated on classical computers[1]. A significant drawback of this approach is the inherent difficulty in designing circuits that can represent these systems on quantum computers. Every quantum circuit is built out of small components called quantum gates. Each of these gates manipulate the quantum system in a specific way. When used in combination, a finite subset of these gates, the set of universal gates, can be used to construct any possible quantum circuit[2].


Exploring Emotion Recognition For Vr-Ebt Using Deep Learning On A Multimodal Physiological Framework, Nicholas Dass Dec 2019

Exploring Emotion Recognition For Vr-Ebt Using Deep Learning On A Multimodal Physiological Framework, Nicholas Dass

Faculty of Applied Science and Technology - Exceptional Student Work, Applied Computing Theses

Post-Traumatic Stress Disorder is a mental health condition that affects a growing number of people. A variety of PTSD treatment methods exist, however current research indicates that virtual reality exposure-based treatment has become more prominent in its use.Yet the treatment method can be costly and time consuming for clinicians and ultimately for the healthcare system. PTSD can be delivered in a more sustainable way using virtual reality. This is accomplished by using machine learning to autonomously adapt virtual reality scene changes. The use of machine learning will also support a more efficient way of inserting positive stimuli in virtual ...


Toward Self-Reconfigurable Parametric Systems: Reinforcement Learning Approach, Ting-Yu Mu Dec 2019

Toward Self-Reconfigurable Parametric Systems: Reinforcement Learning Approach, Ting-Yu Mu

Dissertations

For the ongoing advancement of the fields of Information Technology (IT) and Computer Science, machine learning-based approaches are utilized in different ways in order to solve the problems that belong to the Nondeterministic Polynomial time (NP)-hard complexity class or to approximate the problems if there is no known efficient way to find a solution. Problems that determine the proper set of reconfigurable parameters of parametric systems to obtain the near optimal performance are typically classified as NP-hard problems with no efficient mathematical models to obtain the best solutions. This body of work aims to advance the knowledge of machine ...


Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque Dec 2019

Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque

Computer Science and Engineering: Theses, Dissertations, and Student Research

Landing an unmanned aerial vehicle (UAV) on a moving platform is a challenging task that often requires exact models of the UAV dynamics, platform characteristics, and environmental conditions. In this thesis, we present and investigate three different machine learning approaches with varying levels of domain knowledge: dynamics randomization, universal policy with system identification, and reinforcement learning with no parameter variation. We first train the policies in simulation, then perform experiments both in simulation, making variations of the system dynamics with wind and friction coefficient, then perform experiments in a real robot system with wind variation. We initially expected that providing ...


Materials Prediction Using High-Throughput And Machine Learning Techniques, Chandramouli Nyshadham Dec 2019

Materials Prediction Using High-Throughput And Machine Learning Techniques, Chandramouli Nyshadham

Theses and Dissertations

Predicting new materials through virtually screening a large number of hypothetical materials using supercomputers has enabled materials discovery at an accelerated pace. However, the innumerable number of possible hypothetical materials necessitates the development of faster computational methods for speedier screening of materials reducing the time of discovery. In this thesis, I aim to understand and apply two computational methods for materials prediction. The first method deals with a computational high-throughput study of superalloys. Superalloys are materials which exhibit high-temperature strength. A combinatorial high-throughput search across 2224 ternary alloy systems revealed 102 potential superalloys of which 37 are brand new, all ...


Augmenting Education: Ethical Considerations For Incorporating Artificial Intelligence In Education, Dana Remian Nov 2019

Augmenting Education: Ethical Considerations For Incorporating Artificial Intelligence In Education, Dana Remian

Instructional Design Capstones Collection

Artificial intelligence (AI) has existed in theory and practice for decades, but applications have been relatively limited in most domains. Recent developments in AI and computing have placed AI-enhanced applications in various industries and a growing number of consumer products. AI platforms and services aimed at enhancing educational outcomes and taking over administrative tasks are becoming more prevalent and appearing in more and more classrooms and offices. Conversations about the disruption and ethical concerns created by AI are occurring in many fields. The development of the technology threatens to outpace academic discussion of its utility and pitfalls in education, however ...


“Where’S The I-O?” Artificial Intelligence And Machine Learning In Talent Management Systems, Manuel F. Gonzalez, John F. Capman, Frederick L. Oswald, Evan R. Theys, David L. Tomczak Nov 2019

“Where’S The I-O?” Artificial Intelligence And Machine Learning In Talent Management Systems, Manuel F. Gonzalez, John F. Capman, Frederick L. Oswald, Evan R. Theys, David L. Tomczak

Personnel Assessment and Decisions

Artificial intelligence (AI) and machine learning (ML) have seen widespread adoption by organizations seeking to identify and hire high-quality job applicants. Yet the volume, variety, and velocity of professional involvement among I-O psychologists remains relatively limited when it comes to developing and evaluating AI/ML applications for talent assessment and selection. Furthermore, there is a paucity of empirical research that investigates the reliability, validity, and fairness of AI/ML tools in organizational contexts. To stimulate future involvement and research, we share our review and perspective on the current state of AI/ML in talent assessment as well as its benefits ...


Machine Learning To Quantitate Neutrophil Netosis, Laila Elsherif, Noah Sciaky, Carrington A. Metts, Md. Modasshir, Ioannis Rekleitis, Christine A. Burris, Joshua A. Walker, Nadeem Ramadan, Tina M. Leisner, Stephen P. Holly, Martis W. Cowles, Kenneth I. Ataga, Joshua N. Cooper, Leslie V. Parise Nov 2019

Machine Learning To Quantitate Neutrophil Netosis, Laila Elsherif, Noah Sciaky, Carrington A. Metts, Md. Modasshir, Ioannis Rekleitis, Christine A. Burris, Joshua A. Walker, Nadeem Ramadan, Tina M. Leisner, Stephen P. Holly, Martis W. Cowles, Kenneth I. Ataga, Joshua N. Cooper, Leslie V. Parise

Faculty Publications

We introduce machine learning (ML) to perform classifcation and quantitation of images of nuclei from human blood neutrophils. Here we assessed the use of convolutional neural networks (CNNs) using free, open source software to accurately quantitate neutrophil NETosis, a recently discovered process involved in multiple human diseases. CNNs achieved >94% in performance accuracy in diferentiating NETotic from non-NETotic cells and vastly facilitated dose-response analysis and screening of the NETotic response in neutrophils from patients. Using only features learned from nuclear morphology, CNNs can distinguish between NETosis and necrosis and between distinct NETosis signaling pathways, making them a precise tool for ...


Virtual Wrap-Up Presentation: Digital Libraries, Intelligent Data Analytics, And Augmented Description, Elizabeth Lorang, Leen-Kiat Soh, Yi Liu, Chulwoo Pack Nov 2019

Virtual Wrap-Up Presentation: Digital Libraries, Intelligent Data Analytics, And Augmented Description, Elizabeth Lorang, Leen-Kiat Soh, Yi Liu, Chulwoo Pack

CSE Conference and Workshop Papers

Includes framing, overview, and discussion of the explorations pursued as part of the Digital Libraries, Intelligent Data Analytics, and Augmented Description demonstration project, pursued by members of the Aida digital libraries research team at the University of Nebraska-Lincoln through a research services contract with the Library of Congress. This presentation covered: Aida research team and background for the demonstration project; broad outlines of “Digital Libraries, Intelligent Data Analytics, and Augmented Description”; what changed for us as a research team over the collaboration and why; deliverables of our work; thoughts toward “What next”; and deep-dives into the explorations. The machine learning ...


What Do You Mean? Research In The Age Of Machines, Arthur J. Boston Nov 2019

What Do You Mean? Research In The Age Of Machines, Arthur J. Boston

Faculty & Staff Research and Creative Activity

What Do You Mean?” was an undeniable bop of its era in which Justin Bieber explores the ambiguities of romantic communication. (I pinky promise this will soon make sense for scholarly communication librarians interested in artificial intelligence [AI].) When the single hit airwaves in 2015, there was a meta-debate over what Bieber meant to add to public discourse with lyrics like “What do you mean? Oh, oh, when you nod your head yes, but you wanna say no.” It is unlikely Bieber had consent culture in mind, but the failure of his songwriting team to take into account that some ...


Detecting Digitally Forged Faces In Online Videos, Neilesh Sambhu Oct 2019

Detecting Digitally Forged Faces In Online Videos, Neilesh Sambhu

Graduate Theses and Dissertations

We use Rossler’s FaceForensics dataset of 1004 online videos and their corresponding forged counterparts [1] to investigate the ability to distinguish digitally forged facial images from original images automatically with deep learning. The proposed convolutional neural network is much smaller than the current state-of-the-art solutions. Nevertheless, the network maintains a high level of accuracy (99.6%), all while using the entire FaceForensics dataset and not including any temporal information. We implement majority voting and show the impact on accuracy (99.67%), where only 1 video of 300 is misclassified. We examine why the model misclassified this one video. In ...


Neural Models For Information Retrieval Without Labeled Data, Hamed Zamani Oct 2019

Neural Models For Information Retrieval Without Labeled Data, Hamed Zamani

Doctoral Dissertations

Recent developments of machine learning models, and in particular deep neural networks, have yielded significant improvements on several computer vision, natural language processing, and speech recognition tasks. Progress with information retrieval (IR) tasks has been slower, however, due to the lack of large-scale training data as well as neural network models specifically designed for effective information retrieval. In this dissertation, we address these two issues by introducing task-specific neural network architectures for a set of IR tasks and proposing novel unsupervised or \emph{weakly supervised} solutions for training the models. The proposed learning solutions do not require labeled training data ...


Extracting And Representing Entities, Types, And Relations, Patrick Verga Oct 2019

Extracting And Representing Entities, Types, And Relations, Patrick Verga

Doctoral Dissertations

Making complex decisions in areas like science, government policy, finance, and clinical treatments all require integrating and reasoning over disparate data sources. While some decisions can be made from a single source of information, others require considering multiple pieces of evidence and how they relate to one another. Knowledge graphs (KGs) provide a natural approach for addressing this type of problem: they can serve as long-term stores of abstracted knowledge organized around concepts and their relationships, and can be populated from heterogeneous sources including databases and text. KGs can facilitate higher level reasoning, influence the interpretation of new data, and ...


Ml4iot: A Framework To Orchestrate Machine Learning Workflows On Internet Of Things Data, Jose Miguel Alves, Leonardo Honorio, Miriam A M Capretz Oct 2019

Ml4iot: A Framework To Orchestrate Machine Learning Workflows On Internet Of Things Data, Jose Miguel Alves, Leonardo Honorio, Miriam A M Capretz

Electrical and Computer Engineering Publications

Internet of Things (IoT) applications generate vast amounts of real-time data. Temporal analysis of these data series to discover behavioural patterns may lead to qualified knowledge affecting a broad range of industries. Hence, the use of machine learning (ML) algorithms over IoT data has the potential to improve safety, economy, and performance in critical processes. However, creating ML workflows at scale is a challenging task that depends upon both production and specialized skills. Such tasks require investigation, understanding, selection, and implementation of specific ML workflows, which often lead to bottlenecks, production issues, and code management complexity and even then may ...


Collaborating On Machine Reading: Training Algorithms To Read Complex Collections, Carrie M. Pirmann, Brian R. King, Bhagawat Acharya, Katherine M. Faull Oct 2019

Collaborating On Machine Reading: Training Algorithms To Read Complex Collections, Carrie M. Pirmann, Brian R. King, Bhagawat Acharya, Katherine M. Faull

Bucknell University Digital Scholarship Conference

Interdisciplinary collaboration between two faculty members in the humanities and computer science, a research librarian, and an undergraduate student has led to remarkable results in an ongoing international DH research project that has at its core 18th century manuscripts. The corpus stems from a vast collection of archival materials held by the Moravian Church in the UK, Germany, and the US. The number of pages to be transcribed, differences in handwriting styles, paper quality, and original language pose enormous problems for the feasibility of human transcription. This presentation will review the hypothesis, process, and findings of a summer research project ...


Machine Learning To Support An Interactive Theorem Prover, Salman Haider, Andy Le, Echo Wu, Brian T. Howard Oct 2019

Machine Learning To Support An Interactive Theorem Prover, Salman Haider, Andy Le, Echo Wu, Brian T. Howard

Science Research Fellows Posters

No abstract provided.


Adaptive Feature Engineering Modeling For Ultrasound Image Classification For Decision Support, Hatwib Mugasa Oct 2019

Adaptive Feature Engineering Modeling For Ultrasound Image Classification For Decision Support, Hatwib Mugasa

Doctoral Dissertations

Ultrasonography is considered a relatively safe option for the diagnosis of benign and malignant cancer lesions due to the low-energy sound waves used. However, the visual interpretation of the ultrasound images is time-consuming and usually has high false alerts due to speckle noise. Improved methods of collection image-based data have been proposed to reduce noise in the images; however, this has proved not to solve the problem due to the complex nature of images and the exponential growth of biomedical datasets. Secondly, the target class in real-world biomedical datasets, that is the focus of interest of a biopsy, is usually ...


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Disssertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure ...


Machine Learning Based Ultra High Carbon Steel Image Segmentation, Sumith Kuttiyil Suresh Oct 2019

Machine Learning Based Ultra High Carbon Steel Image Segmentation, Sumith Kuttiyil Suresh

Theses and Dissertations

Mechanical and structural properties of ultra-high carbon steel are determined by their microstructures composed of constituents such as pearlite and spheroidites. Locating micro constituents and quantitatively measuring its presence is key for material researchers to study the physical properties of the carbon steel materials. This micrograph analysis is currently done manually and subjectively by material scientists, which is tedious and time-consuming. Here we propose to apply the image segmentation algorithm called U-Net to achieve automated labeling of steel microstructures on a subset of ultra- high carbon steel image dataset containing pearlite and spheroidite as the primary micro constituents. Our work ...


Machine Learning-Based Models For Assessing Impacts Before, During And After Hurricane Events, Julie L. Harvey Sep 2019

Machine Learning-Based Models For Assessing Impacts Before, During And After Hurricane Events, Julie L. Harvey

Electronic Theses and Dissertations

Social media provides an abundant amount of real-time information that can be used before, during, and after extreme weather events. Government officials, emergency managers, and other decision makers can use social media data for decision-making, preparation, and assistance. Machine learning-based models can be used to analyze data collected from social media. Social media data and cloud cover temperature as physical sensor data was analyzed in this study using machine learning techniques. Data was collected from Twitter regarding Hurricane Florence from September 11, 2018 through September 20, 2018 and Hurricane Michael from October 1, 2018 through October 18, 2018. Natural language ...


Urban Health Related Air Quality Indicators Over The Middle East And North Africa Countries Using Multiple Satellites And Aeronet Data, Maram El-Nadry, Wenzhao Li, Hesham El-Askary, Mohamed A. Awad, Alaa Ramadan Awad Sep 2019

Urban Health Related Air Quality Indicators Over The Middle East And North Africa Countries Using Multiple Satellites And Aeronet Data, Maram El-Nadry, Wenzhao Li, Hesham El-Askary, Mohamed A. Awad, Alaa Ramadan Awad

Mathematics, Physics, and Computer Science Faculty Articles and Research

Air pollution is reported as one of the most severe environmental problems in the Middle East and North Africa (MENA) region. Remotely sensed data from newly available TROPOMI - TROPOspheric Monitoring Instrument on board Sentinel-5 Precursor, shows an annual mean of high-resolution maps of selected air quality indicators (NO2, CO, O3, and UVAI) of the MENA countries for the first time. The correlation analysis among the aforementioned indicators show the coherency of the air pollutants in urban areas. Multi-year data from the Aerosol Robotic Network (AERONET) stations from nine MENA countries are utilized here to study the aerosol optical depth (AOD ...


On Video Analysis Of Omnidirectional Bee Traffic: Counting Bee Motions With Motion Detection And Image Classification, Vladmir Kulyukin, Sarbajit Mukherjee Sep 2019

On Video Analysis Of Omnidirectional Bee Traffic: Counting Bee Motions With Motion Detection And Image Classification, Vladmir Kulyukin, Sarbajit Mukherjee

Computer Science Faculty and Staff Publications

Omnidirectional bee traffic is the number of bees moving in arbitrary directions in close proximity to the landing pad of a given hive over a given period of time. Video bee traffic analysis has the potential to automate the assessment of omnidirectional bee traffic levels, which, in turn, may lead to a complete or partial automation of honeybee colony health assessment. In this investigation, we proposed, implemented, and partially evaluated a two-tier method for counting bee motions to estimate levels of omnidirectional bee traffic in bee traffic videos. Our method couples motion detection with image classification so that motion detection ...


Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan Sep 2019

Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan

Agronomy Publications

Nitrogen (N) fertilizer recommendation tools could be improved for estimating corn (Zea mays L.) N needs by incorporating site-specific soil and weather information. However, an evaluation of analytical methods is needed to determine the success of incorporating this information. The objectives of this research were to evaluate statistical and machine learning (ML) algorithms for utilizing soil and weather information for improving corn N recommendation tools. Eight algorithms [stepwise, ridge regression, least absolute shrinkage and selection operator (Lasso), elastic net regression, principal component regression (PCR), partial least squares regression (PLSR), decision tree, and random forest] were evaluated using a dataset containing ...