Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

The Importance Of Landscape Position Information And Elevation Uncertainty For Barrier Island Habitat Mapping And Modeling, Nicholas Matthew Enwright Aug 2019

The Importance Of Landscape Position Information And Elevation Uncertainty For Barrier Island Habitat Mapping And Modeling, Nicholas Matthew Enwright

LSU Doctoral Dissertations

Barrier islands provide important ecosystem services, including storm protection and erosion control to the mainland, habitat for fish and wildlife, and tourism. As a result, natural resource managers are concerned with monitoring changes to these islands and modeling future states of these environments. Landscape position, such as elevation and distance from shore, influences habitat coverage on barrier islands by regulating exposure to abiotic factors, including waves, tides, and salt spray. Geographers commonly use aerial topographic lidar data for extracting landscape position information. However, researchers rarely consider lidar elevation uncertainty when using automated processes for extracting elevation-dependent habitats from lidar data ...


Seavipers - Computer Vision And Inertial Position Reference Sensor System (Cviprss), Justin Lee Erdman Jan 2015

Seavipers - Computer Vision And Inertial Position Reference Sensor System (Cviprss), Justin Lee Erdman

LSU Doctoral Dissertations

This work describes the design and development of an optical, Computer Vision (CV) based sensor for use as a Position Reference System (PRS) in Dynamic Positioning (DP). Using a combination of robotics and CV techniques, the sensor provides range and heading information to a selected reference object. The proposed optical system is superior to existing ones because it does not depend upon special reflectors nor does it require a lengthy set-up time. This system, the Computer Vision and Inertial Position Reference Sensor System (CVIPRSS, pronounced \nickname), combines a laser rangefinder, infrared camera, and a pan--tilt unit with the robust TLD ...


The Gaussian Radon Transform For Banach Spaces, Irina Holmes Jan 2014

The Gaussian Radon Transform For Banach Spaces, Irina Holmes

LSU Doctoral Dissertations

The classical Radon transform can be thought of as a way to obtain the density of an n-dimensional object from its (n-1)-dimensional sections in diff_x001B_erent directions. A generalization of this transform to infi_x001C_nite-dimensional spaces has the potential to allow one to obtain a function de_x001C_fined on an infi_x001C_nite-dimensional space from its conditional expectations. We work within a standard framework in in_x001C_finite-dimensional analysis, that of abstract Wiener spaces, developed by L. Gross. The main obstacle in infinite dimensions is the absence of a useful version of Lebesgue measure. To overcome this, we work with Gaussian measures. Specifically, we construct Gaussian ...


On Identifying Critical Nuggets Of Information During Classification Task, David Sathiaraj Jan 2013

On Identifying Critical Nuggets Of Information During Classification Task, David Sathiaraj

LSU Doctoral Dissertations

In large databases, there may exist critical nuggets - small collections of records or instances that contain domain-specific important information. This information can be used for future decision making such as labeling of critical, unlabeled data records and improving classification results by reducing false positive and false negative errors. In recent years, data mining efforts have focussed on pattern and outlier detection methods. However, not much effort has been dedicated to finding critical nuggets within a data set. This work introduces the idea of critical nuggets, proposes an innovative domain-independent method to measure criticality, suggests a heuristic to reduce the search ...


Knowledge-Based Methods For Automatic Extraction Of Domain-Specific Ontologies, Janardhana R. Punuru Jan 2007

Knowledge-Based Methods For Automatic Extraction Of Domain-Specific Ontologies, Janardhana R. Punuru

LSU Doctoral Dissertations

Semantic web technology aims at developing methodologies for representing large amount of knowledge in web accessible form. The semantics of knowledge should be easy to interpret and understand by computer programs, so that sharing and utilizing knowledge across the Web would be possible. Domain specific ontologies form the basis for knowledge representation in the semantic web. Research on automated development of ontologies from texts has become increasingly important because manual construction of ontologies is labor intensive and costly, and, at the same time, large amount of texts for individual domains is already available in electronic form. However, automatic extraction of ...


Learning Discrete Hidden Markov Models From State Distribution Vectors, Luis G. Moscovich Jan 2005

Learning Discrete Hidden Markov Models From State Distribution Vectors, Luis G. Moscovich

LSU Doctoral Dissertations

Hidden Markov Models (HMMs) are probabilistic models that have been widely applied to a number of fields since their inception in the late 1960’s. Computational Biology, Image Processing, and Signal Processing, are but a few of the application areas of HMMs. In this dissertation, we develop several new efficient learning algorithms for learning HMM parameters. First, we propose a new polynomial-time algorithm for supervised learning of the parameters of a first order HMM from a state probability distribution (SD) oracle. The SD oracle provides the learner with the state distribution vector corresponding to a query string. We prove the ...


Machine Learning Techniques For Efficient Query Processing In Kowledge Base Systems, Kevin Paul Grant Jan 2003

Machine Learning Techniques For Efficient Query Processing In Kowledge Base Systems, Kevin Paul Grant

LSU Doctoral Dissertations

In this dissertation we propose a new technique for efficient query processing in knowledge base systems. Query processing in knowledge base systems poses strong computational challenges because of the presence of combinatorial explosion. This arises because at any point during query processing there may be too many subqueries available for further exploration. Overcoming this difficulty requires effective mechanisms for choosing from among these subqueries good subqueries for further processing. Inspired by existing works on stochastic logic programs, compositional modeling and probabilistic heuristic estimates we create a new, nondeterministic method to accomplish the task of subquery selection for query processing. Specifically ...