Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atoms

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 61 - 67 of 67

Full-Text Articles in Physical Sciences and Mathematics

Oscillator Strengths Of The Si Ii 181 Nanometer Resonance Multiplet, Scott D. Bergeson, J. E. Lawler Jan 1993

Oscillator Strengths Of The Si Ii 181 Nanometer Resonance Multiplet, Scott D. Bergeson, J. E. Lawler

Faculty Publications

We report Si II experimental log (gf)-values of –2.38(4) for the 180.801 nm line, of –2.18(4) for the 181.693 nm line, and of –3.29(5) for the 181.745 nm line, where the number in parenthesis is the uncertainty in the last digit. The overall uncertainties (~10%) include the 1 σ random uncertainty (~6%) and an estimate of the systematic uncertainty. The oscillator strengths are determined by combining branching fractions and radiative lifetimes. The branching fractions are measured using standard spectroradiometry on an optically thin source; the radiative lifetimes are measured using time-resolved laser-induced fluorescence.


Proton–Donor Properties Of Water And Ammonia In Van Der Waals Complexes With Rare‐Gas Atoms. Kr–H2o And Kr–Nh3, G. Chalasinski, M. M. Szczesniak, Steve Scheiner Jan 1992

Proton–Donor Properties Of Water And Ammonia In Van Der Waals Complexes With Rare‐Gas Atoms. Kr–H2o And Kr–Nh3, G. Chalasinski, M. M. Szczesniak, Steve Scheiner

Steve Scheiner

The perturbation theory of intermolecular forces in conjunction with the supermolecular Møller–Plesset perturbation theory is applied to the analysis of the potential‐energy surfaces of Kr–H2O and Kr–NH3 complexes. The valleylike minimum region on the potential‐energy surface of Kr–H2O ranges from the coplanar geometry with the C2 axis of H2O nearly perpendicular to the O–Kr axis (T structure) to the H‐bond structure in which Kr faces the H atom of H2O. Compared to the previously studied Ar–H2O [J. Chem. Phys. 94, 2807 (1991)] the minimum has more …


Proton–Donor Properties Of Water And Ammonia In Van Der Waals Complexes With Rare‐Gas Atoms. Kr–H2o And Kr–Nh3, G. Chalasinski, M. M. Szczesniak, Steve Scheiner Jan 1992

Proton–Donor Properties Of Water And Ammonia In Van Der Waals Complexes With Rare‐Gas Atoms. Kr–H2o And Kr–Nh3, G. Chalasinski, M. M. Szczesniak, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

The perturbation theory of intermolecular forces in conjunction with the supermolecular Møller–Plesset perturbation theory is applied to the analysis of the potential‐energy surfaces of Kr–H2O and Kr–NH3 complexes. The valleylike minimum region on the potential‐energy surface of Kr–H2O ranges from the coplanar geometry with the C2 axis of H2O nearly perpendicular to the O–Kr axis (T structure) to the H‐bond structure in which Kr faces the H atom of H2O. Compared to the previously studied Ar–H2O [J. Chem. Phys. 94, 2807 (1991)] the minimum has more …


Energetic Protons And Deuterons Emitted Following Μ⁻ Capture By ³He Nuclei, W. J. Cummings, G. E. Dodge, S. S. Hanna, B. H. King, S. E. Kuhn, Y. M. Shin, R. Helmer, R. B. Schubank, N. R. Stevenson, U. Wienands, Y. K. Lee, G. R. Mason, B. E. King, K. S. Chung, J. M. Lee, D. P. Rosenzweig Jan 1992

Energetic Protons And Deuterons Emitted Following Μ⁻ Capture By ³He Nuclei, W. J. Cummings, G. E. Dodge, S. S. Hanna, B. H. King, S. E. Kuhn, Y. M. Shin, R. Helmer, R. B. Schubank, N. R. Stevenson, U. Wienands, Y. K. Lee, G. R. Mason, B. E. King, K. S. Chung, J. M. Lee, D. P. Rosenzweig

Physics Faculty Publications

Spectra of energetic protons and deuterons emitted following negative muon capture from rest in 3He have been measured for the first time. Significant capture strength is observed at high energy transfers (mμ- Ev >60 MeV) for the two-body and three-body breakup channels, indicative of the importance of nucleon-nucleon correlations and meson exchange currents in the capture process. A simple plane wave impulse approximation calculation reproduces the proton spectrum reasonably well, but underpredicts the deuteron rate at the highest energies by a large factor.


Density Effect In Cu K-Shell Ionization By 5.1-Gev Electrons, W. E. Meyerhof, D. G. Jensen, D. M. Kawall, S. E. Kuhn, D. W. Spooner, Z. E. Meziani, D.. N. Faust Jan 1992

Density Effect In Cu K-Shell Ionization By 5.1-Gev Electrons, W. E. Meyerhof, D. G. Jensen, D. M. Kawall, S. E. Kuhn, D. W. Spooner, Z. E. Meziani, D.. N. Faust

Physics Faculty Publications

We have made an absolute measurement of the Cu K-shell impact ionization cross section by 5.1-GeV electrons, which demonstrates directly a density effect predicted by Fermi in 1940. By determining the ratio of the K x-ray yield from a thin front and back layer of the target by a novel grazing emission method, we have verified the effect of transition radiation on the x-ray production, suggested by Sorensen and reported by Bak et al.


Comparison Of Proton Transfers In (S2h5)+ And (O2h5)+, L. Bigham, Steve Scheiner Jan 1985

Comparison Of Proton Transfers In (S2h5)+ And (O2h5)+, L. Bigham, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

The energetics and electronic rearrangements associated with proton transfer between S atoms in (H2S–H–SH2)+ are calculated using ab initio molecular orbital methods and compared with similar data in the first‐row analog (H2O–H–OH2)+. The full potential energy surface of (S2H5)+, calculated as a function of the H‐bond length as well as the position of the proton, contains two equivalent minima separated by a small energy barrier, whereas the surface of (O2H5)+ contains a single minimum corresponding to a symmetric …


Proton Transfers Between First‐ And Second‐Row Atoms: (H2ohsh2)+ And (H3nhsh2)+, Steve Scheiner Jan 1984

Proton Transfers Between First‐ And Second‐Row Atoms: (H2ohsh2)+ And (H3nhsh2)+, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Ab initio molecular orbital methods are used to study the transfer of the central proton along the hydrogen bonds in (H2OHSH2)+ and (H3NHSH2)+. Proton transfer potentials are generated using the 4‐31G∗ basis set at the Hartree–Fock level for various values for the hydrogen bond length R(XS). Full geometry optimizations are carried out at each stage of proton transfer. The barrier to proton transfer increases as the hydrogen bond is lengthened. For a given bond length, the highest barriers are observed for transfer from …