Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Few-Boson Processes In The Presence Of An Attractive Impurity Under One-Dimensional Confinement, Nirav Mehta, Connor Morehead Nov 2015

Few-Boson Processes In The Presence Of An Attractive Impurity Under One-Dimensional Confinement, Nirav Mehta, Connor Morehead

Nirav P Mehta

We consider a few-boson system confined to one dimension with a single distinguishable particle of lesser mass. All particle interactions are modeled with δ functions, but due to the mass imbalance the problem is nonintegrable. Universal few-body binding energies, atom-dimer and atom-trimer scattering lengths, are all calculated in terms of two parameters, namely the mass ratio mL/mH, and ratio gHH/gHL of the δ-function couplings. We specifically identify the values of these ratios for which the atom-dimer or atom-trimer scattering lengths vanish or diverge. We identify regions in this parameter space in which various few-body inelastic processes become energetically allowed. In …


Proton–Donor Properties Of Water And Ammonia In Van Der Waals Complexes With Rare‐Gas Atoms. Kr–H2o And Kr–Nh3, G. Chalasinski, M. M. Szczesniak, Steve Scheiner Jan 1992

Proton–Donor Properties Of Water And Ammonia In Van Der Waals Complexes With Rare‐Gas Atoms. Kr–H2o And Kr–Nh3, G. Chalasinski, M. M. Szczesniak, Steve Scheiner

Steve Scheiner

The perturbation theory of intermolecular forces in conjunction with the supermolecular Møller–Plesset perturbation theory is applied to the analysis of the potential‐energy surfaces of Kr–H2O and Kr–NH3 complexes. The valleylike minimum region on the potential‐energy surface of Kr–H2O ranges from the coplanar geometry with the C2 axis of H2O nearly perpendicular to the O–Kr axis (T structure) to the H‐bond structure in which Kr faces the H atom of H2O. Compared to the previously studied Ar–H2O [J. Chem. Phys. 94, 2807 (1991)] the minimum has more …