Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physical Sciences and Mathematics

Soil And Plant Property Differences Among High-Yield Soybean Areas In Arkansas, Taylor Cass Adams Dec 2016

Soil And Plant Property Differences Among High-Yield Soybean Areas In Arkansas, Taylor Cass Adams

Graduate Theses and Dissertations

Continued achievement of soybean [Glycine max (L.) Merr.] yields greater than 6719 kg ha-1 (100 bu ac-1) will depend on decreasing the yield gap, which is contingent on gathering more information regarding the soil physical, chemical, and microbiological environment and the main plant factors contributing to high-yield soybean. Therefore, understanding the main factor differences between high- and average-yield areas may provide insight for making management decisions to increase yields. The objectives of this study were i) to evaluate the effects of region and soil depth on soil property differences between high- and average-soybean-yielding areas, ii) to determine which soil properties …


The Illinois Soil Nitrogen Test: Should It Be Used In Iowa?, John E. Sawyer, Mohammod Ali Tabatabai Jul 2016

The Illinois Soil Nitrogen Test: Should It Be Used In Iowa?, John E. Sawyer, Mohammod Ali Tabatabai

John E. Sawyer

The test was developed several years ago at the University of Illinois by researchers in the Department of Natural Resources and Environmental Sciences. It is a laboratory procedure designed to measure N liberated from soil heated for 5 hours with dilute alkali solution (sodium hydroxide). The test does not measure nitrate, but does measure exchangeable ammonium and a fraction of soil organic N.


Interpreting P And K Soil Test Results, John E. Sawyer, Antonio P. Mallarino Jul 2016

Interpreting P And K Soil Test Results, John E. Sawyer, Antonio P. Mallarino

John E. Sawyer

Soil testing is a key component for determining the need for phosphorus (P) and potassium (K) fertilization. Also, if fertilization is required, test results guide the rate of application recommended to optimize production. Through extensive field research, specific soil tests are calibrated against the expectation of response to applied P and K; that is, they provide both a relative index of the availability of P and K to the crop being grown and an indication of the magnitude of yield increase one might expect when nutrients are applied, thus providing the interpretation of text results.


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


Drought Impacts On Soil Fertility Management, John E. Sawyer Jul 2016

Drought Impacts On Soil Fertility Management, John E. Sawyer

John E. Sawyer

If crop production was severely reduced because of dry conditions this year, there are a few items you can consider when planning for next year's crop. One, with severely damaged crops and low yields you might credit some of the phosphorus (P) and potassium (K) applied for this year's crop to next year, as much less removal will occur in grain harvest of the lower than expected yield.


Corn Stalk Nitrate Interpretation, John E. Sawyer Jul 2016

Corn Stalk Nitrate Interpretation, John E. Sawyer

John E. Sawyer

You’ve gotten results from corn stalk nitrate samples collected this fall. (Corn stalk nitrate analysis form.) Now, what do the results mean? The stalk nitrate test is based on the concentration of nitrate-N in the lower corn stalk (8 inch segment from 6 to 14 inches above the ground) when the plant reaches maturity (See Cornstalk testing to evaluate nitrogen management, PM 1584). In general, a larger amount of plant-available N in the soil during the time period before plant maturity results in a greater concentration of nitrate in the lower stalk. However, the stalk nitrate-N concentration …


Corn Stalk Nitrate Interpretation, John E. Sawyer Jul 2016

Corn Stalk Nitrate Interpretation, John E. Sawyer

John E. Sawyer

You’ve gotten results from corn stalk nitrate samples collected this fall. (Corn stalk nitrate analysis form.) Now, what do the results mean? The stalk nitrate test is based on the concentration of nitrate-N in the lower corn stalk (8 inch segment from 6 to 14 inches above the ground) when the plant reaches maturity (See Cornstalk testing to evaluate nitrogen management, PM 1584). In general, a larger amount of plant-available N in the soil during the time period before plant maturity results in a greater concentration of nitrate in the lower stalk. However, the stalk nitrate-N concentration can be greatly …


Anhydrous Ammonia Application And Dry Soils, John E. Sawyer Jul 2016

Anhydrous Ammonia Application And Dry Soils, John E. Sawyer

John E. Sawyer

It is almost time that anhydrous ammonia (NH3) applications could begin (remember 50 F and cooling 4-inch soil temperature). However, many soils in Iowa are quite dry this fall. So, can anhydrous ammonia be applied to dry soil? Will it be held in dry soil?


45th Annual North Central Extension-Industry Soil Fertility Conference, John E. Sawyer Jul 2016

45th Annual North Central Extension-Industry Soil Fertility Conference, John E. Sawyer

John E. Sawyer

If you would like to learn more about current soil fertility issues and research being conducted at universities across the North Central region, then consider attending the 45th Annual North Central Extension-Industry Soil Fertility Conference on November 4-5, 2015, from 1 p.m. to noon, at the Holiday Inn Airport in Des Moines, Iowa. The conference will include invited presentations from university and industry leaders, research reports from university soil fertility researchers, and posters outlining research by graduate students at universities across the North Central region (Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Nebraska, North Dakota, Ohio, Ontario, Pennsylvania, South Dakota, …


Impacts Of Cover Crops On Phosphorus And Nitrogen Loss With Surface Runoff, Antonio Mallarino, Richard Cruse, Dan Jaynes, John Sawyer, Pablo Barbieri Jul 2016

Impacts Of Cover Crops On Phosphorus And Nitrogen Loss With Surface Runoff, Antonio Mallarino, Richard Cruse, Dan Jaynes, John Sawyer, Pablo Barbieri

John E. Sawyer

Iowa research has demonstrated that cover crops can improve soil productivity and water quality by increasing soil organic matter and reducing nitrate nitrogen (N) leaching. Other research has investigated and is investigating the agronomic and economic viability of using cereal rye cover crops in continuous corn or corn-soybean rotations. However, no Iowa research has evaluated under natural rainfall the impact of cover crops on phosphorus (P) and N loss with surface runoff interacting with other management practices. The need for this type of research was indicated in the Iowa Nutrient Reduction Strategy documents. This effort assessed what would be needed …


Impact Of 4r Management On Crop Production And Nitrate-Nitrogen Loss In Tile Drainage, Matthew Helmers, John Sawyer, Josh Sievers Jul 2016

Impact Of 4r Management On Crop Production And Nitrate-Nitrogen Loss In Tile Drainage, Matthew Helmers, John Sawyer, Josh Sievers

John E. Sawyer

Corn Belt corn and soybean producers are increasingly challenged to maximize crop production while addressing the contributions farm practices make to Gulf hypoxia. Based on the need for nitrate-N reductions to meet water quality goals, new management practices are needed to reduce nitrate-N losses at minimal cost and maximum economic benefits. This three-year field research and demonstration project is evaluating various promising N management methods and technologies by documenting the nitrate-N export and crop yield from various systems.