Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Applied Symmetry For Crystal Structure Prediction, Scott William Fredericks Aug 2019

Applied Symmetry For Crystal Structure Prediction, Scott William Fredericks

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis presents an original open-source Python package called PyXtal (pronounced "pi-crystal") that generates random symmetric crystal structures for use in crystal structure prediction (CSP). The primary advantage of PyXtal over existing structure generation tools is its unique symmetrization method. For molecular structures, PyXtal uses an original algorithm to determine the compatibility of molecular point group symmetry with Wyckoff site symmetry. This allows the molecules in generated structures to occupy special Wyckoff positions without breaking the structure's symmetry. This is a new feature which increases the space of search-able structures and in turn improves CSP performance.

It is shown that …


Equation Of State Of H2o Ice Using Melt-Recrystallization, Zachary Michael Grande May 2019

Equation Of State Of H2o Ice Using Melt-Recrystallization, Zachary Michael Grande

UNLV Theses, Dissertations, Professional Papers, and Capstones

The recent surge in exoplanet discoveries due to advancements in astrophysical technology and analysis has brought the reliability of early equation of state measurements into question as they are the limiting factor when modeling composition of these planets. H2O content is among the most important for the search of habitable planets as well as in understanding planetary dynamics and atmosphere formation. Over the last three decades the equation of state of H2O has been investigated with various techniques but, has suffered from anisotropic strain and poor powder statistics resulting in a large discrepancy in equation of state fits. At pressures …


High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton May 2019

High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

Metastability of states can provide interesting properties that may not be readily accessible in a material’s ground state. Many materials show high levels of polymorphism, indicating a rich energy landscape and a potential for metastable states. Melt crystallization techniques provide a potential route to these states. We use a resistively heated diamond anvil cell (DAC) with fine control of a system’s pressure and temperature to explore these systems. Raman spectroscopy is used to track subtle structural changes across phase boundaries. Organic systems, such as glycine and aspirin, were our initial interest due to their high polymorphism and reported low melting …


Specific Heat, Magnetic Susceptibility, And The Effect Of Pressure On Structural Properties And Valence Of Eumn2si2, Euco2si2, And Eu5in2sb6, Brian Edward Light May 2019

Specific Heat, Magnetic Susceptibility, And The Effect Of Pressure On Structural Properties And Valence Of Eumn2si2, Euco2si2, And Eu5in2sb6, Brian Edward Light

UNLV Theses, Dissertations, Professional Papers, and Capstones

Many intermetallic solids containing elements from the rare earth series show interesting and unusual behavior associated with 4f electrons. This behavior includes unusual magnetic order, strongly correlated electrons, intermediate valence, heavy fermions, the Kondo effect, superconductivity, and non-Fermi liquid (NFL) to name a few. When long range magnetic order is suppressed to T = 0 K by the application of an external tuning parameter such as pressure, magnetic field, or chemical doping, a quantum critical point (QCP) appears in which strong quantum fluctuations give rise to many of the mentioned unusual properties.

Most of the past studies on unusual 4f …


Super Rapid Crystal Growth And Quench Of Monoclinic Bi-Ii* During Dynamic Compression, Zachary Allen Fussell May 2019

Super Rapid Crystal Growth And Quench Of Monoclinic Bi-Ii* During Dynamic Compression, Zachary Allen Fussell

UNLV Theses, Dissertations, Professional Papers, and Capstones

We show that monoclinic Bi-II* forms during a dynamic compression regime with crystal growth rates from melt of ≈ 70 m/s. This extreme quench rate implies crystallization by non-diffusive processes and indicates that the liquid had a high degree of pre-ordering. Using ambient condition single crystal structure analysis we show for the first time that the monoclinic distorted phase of Bi (Bi-II) exists at ambient pressure, albeit bound to formation under dynamic compression. We review the pressure, temperature, and time conditions for formation and growth of this structure.