Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Physics

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 61

Full-Text Articles in Physical Sciences and Mathematics

Correction To Luminosity Measurement For The Pixel Luminosity Telescope At Cms, Krishna Thapa Dec 2016

Correction To Luminosity Measurement For The Pixel Luminosity Telescope At Cms, Krishna Thapa

Masters Theses

The search for and detailed study of new particles and forces with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) of CERN is fundamentally dependent on the precise measurement of the rate at which proton-proton collisions produce any particles, the so-called luminosity. Therefore, a new detector, the Pixel Luminosity Telescope (PLT), dedicated to measure the luminosity at high precision was added to the CMS experiment in 2015. It measures the inclusive charged particle production from each collision of proton bunches in the LHC. Additional charged particles which are observed by the instrument but produced from sources …


Symmetry And Reconstruction Of Particle Structure From Random Angle Diffraction Patterns, Sandi Wibowo Dec 2016

Symmetry And Reconstruction Of Particle Structure From Random Angle Diffraction Patterns, Sandi Wibowo

Theses and Dissertations

The problem of determining the structure of a biomolecule, when all the evidence from experiment consists of individual diffraction patterns from random particle orientations, is the central theoretical problem with an XFEL. One of the methods proposed is a calculation over all measured diffraction patterns of the average angular correlations between pairs of points on the diffraction patterns. It is possible to construct from these a matrix B characterized by angular momentum quantum number l, and whose elements are characterized by radii q and q’ of the resolution shells. If matrix B is considered as dot product of vectors, which …


Art As A Tool In Quantum Mechanics, Zachary Vealey Oct 2016

Art As A Tool In Quantum Mechanics, Zachary Vealey

Oglethorpe Journal of Undergraduate Research

Revolutions in scientific thought often have substantial societal consequences, however, cultural assimilation of the new idea is contingent on a widespread understanding. Historically recent developments in modern physics, such as quantum mechanics and general relativity, suffer from their notoriously perceived difficulty, thus hindering cultural assimilation. To address this issue, art can serve as a useful complement to a student studying quantum mechanics - especially through its interpretation of delocalized electron density. A cross-disciplinary approach affords a greater diversity in participation and consequently results in a broader scientific outreach.


The Role Of Partial Surface Charge Compensation In The Properties Of Ferroelectric And Antiferroelectric Thin Films, Elena Glazkova Oct 2016

The Role Of Partial Surface Charge Compensation In The Properties Of Ferroelectric And Antiferroelectric Thin Films, Elena Glazkova

USF Tampa Graduate Theses and Dissertations

Ferroelectric and antiferroelectric ultrathin films have attracted a lot of attention recently due to their remarkable properties and their potential to allow for device miniaturization in numerous applications. However, when the ferroelectric films are scaled down, it brings about an unavoidable depolarizing field. A partial surface charge compensation allows to control the residual depolarizing field and manipulate the properties of ultrathin ferroelectric films. In this dissertation we take advantage of atomistic first-principles-based simulations to expand our understanding of the role of the partial surface charge compensation in the properties of ferroelectric and antiferroelectric ultrathin films.

The application of our computational …


Exoplanet Research: Differential Photometry For Kepler 6b, Garrett T. Benson, Charlotte Alexandra Olsen Oct 2016

Exoplanet Research: Differential Photometry For Kepler 6b, Garrett T. Benson, Charlotte Alexandra Olsen

IdeaFest: Interdisciplinary Journal of Creative Works and Research from Cal Poly Humboldt

No abstract provided.


College Of Science And Mathematics Newsletter, Fall 2016, College Of Science And Mathematics, Wright State University Oct 2016

College Of Science And Mathematics Newsletter, Fall 2016, College Of Science And Mathematics, Wright State University

College of Science and Mathematics Newsletters

This 6 page newsletter discusses various happenings within the College of Science and Mathematics. It begins with a letter from the dean, and continues on with news, events, alumni news, and other community news.


A Multi-Wavelength Analysis Of Cold Evolving Interstellar Clouds, Mary Spraggs Sep 2016

A Multi-Wavelength Analysis Of Cold Evolving Interstellar Clouds, Mary Spraggs

Mahurin Honors College Capstone Experience/Thesis Projects

The interstellar medium (ISM) is the dynamic system of gas and dust that fills the space between the stars within galaxies. Due to its integral role in star formation and ga-lactic structure, it is important to understand how the ISM itself evolves over time, in-cluding the process of cooling and condensing required to form new stars. This work aims to constrain and better understand the physical properties of the cold ISM with sev-eral different types of data, including large surveys of neutral atomic hydrogen (HI) 21cm spectral line emission and absorption, carbon monoxide (CO) 2.6mm line emission, and multi-band infrared …


The Subject Librarian Newsletter, Physics, Fall 2016, Patti Mccall Sep 2016

The Subject Librarian Newsletter, Physics, Fall 2016, Patti Mccall

Libraries' Newsletters

No abstract provided.


Examination Of Resonant Modes In Microwave Cavities, Sophia Schwalbe, Gianpaolo Carosi Aug 2016

Examination Of Resonant Modes In Microwave Cavities, Sophia Schwalbe, Gianpaolo Carosi

Student Works

The Axion Dark Matter eXperiment (ADMX) looks to detect dark matter axion particles by using microwave cavities in a high magnetic eld to convert the axion's mass energy to a detectable photon. The photon frequency corresponds to the axion mass. Tuning elements in the cavities allow the resonant frequency to be changed but only certain modes couple to the axion. Interactions with additional resonant modes that do not couple to the axion cause unobservable regions in the frequency range. This research investigated new methods to move the additional resonant modes in order to observe these regions.


Inflation And The Quantum Measurement Problem, Stephon Alexander, Dhrubo Jyoti, João Magueijo Aug 2016

Inflation And The Quantum Measurement Problem, Stephon Alexander, Dhrubo Jyoti, João Magueijo

Dartmouth Scholarship

We propose a solution to the quantum measurement problem in inflation. Our model treats Fourier modes of cosmological perturbations as analogous to particles in a weakly interacting Bose gas. We generalize the idea of a macroscopic wave function to cosmological fields, and construct a self-interaction Hamiltonian that focuses that wave function. By appropriately setting the coupling between modes, we obtain the standard adiabatic, scale-invariant power spectrum. Because of central limit theorem, we recover a Gaussian random field, consistent with observations.


Flickering Analysis Of Ch Cygni Using Kepler Data, Thomas Holden Dingus Aug 2016

Flickering Analysis Of Ch Cygni Using Kepler Data, Thomas Holden Dingus

Undergraduate Honors Theses

Utilizing data from the Kepler Mission, we analyze a flickering phenomenon in the symbiotic variable star CH Cygni. We perform a spline interpolation of an averaged lightcurve and subtract the spline to acquire residual data. This allows us to analyze the deviations that are not caused by the Red Giant’s semi-regular periodic variations. We then histogram the residuals and perform moment calculations for variance, skewness, and kurtosis for the purpose of determining the nature of the flickering. Our analysis has shown that we see a much smaller scale flickering than observed in the previous literature. Our flickering scale is on …


College Of Science And Mathematics Newsletter, Summer 2016, College Of Science And Mathematics, Wright State University Jul 2016

College Of Science And Mathematics Newsletter, Summer 2016, College Of Science And Mathematics, Wright State University

College of Science and Mathematics Newsletters

This 5 page newsletter discusses various happenings within the College of Science and Mathematics. It begins with a letter from the dean, and continues on with news, events, alumni news, and other community news.


Determination Of The Polarization Observables Cx, Cz, And Py For Final-State Interactions In The Reaction −!D ! K+−!N, Tongtong Cao Jun 2016

Determination Of The Polarization Observables Cx, Cz, And Py For Final-State Interactions In The Reaction −!D ! K+−!N, Tongtong Cao

Theses and Dissertations

The hyperon-nucleon (YN) interaction plays a key role in hypernuclei and strange nuclear matter and is an important part of the baryon-baryon interaction. While considerable progress has been made in the understanding of the nucleon-nucleon (NN) interaction, the YN interaction is less known. Some parameters of the YN potential can be obtained from the NN potential by using SU(3) symmetry. However, due to broken SU(3) there are parameters, which must be obtained from fits to experimental data. High-statistics data on exclusive photoproduction off the deuteron initiated with highly-polarized photons offer a unique opportunity to extract a large sample of polarization …


Sensitivity Of The Cuore Detector To Solar Axions, Dawei Li Jun 2016

Sensitivity Of The Cuore Detector To Solar Axions, Dawei Li

Theses and Dissertations

The strong CP problem in Quantum Chromodynamics (QCD), predicts the neutron electric dipole moment to be a factor of 1010 larger than the observed upper bound [15]. Roberto Peccei and Helen Quinn [58, 63] proposed an elegant solution to this problem by introducing a global U(1)PQ symmetry that is spontaneously broken at an energy scale fa. A consequence of this symmetry-breaking is that a new spin-zero neutral pseudoscalar particle, the axion, is generated which is a Nambu-Goldstone boson [70, 78]. The “invisible axion” models with fa >> fEW, typically KSVZ and DFSZ models, have been proposed and recognized to be far-reaching …


Analytic Models Of Brown Dwarfs And The Substellar Mass Limit, Sree Ram Valluri, Shantanu Basu, Sayantan Auddy Jun 2016

Analytic Models Of Brown Dwarfs And The Substellar Mass Limit, Sree Ram Valluri, Shantanu Basu, Sayantan Auddy

Physics and Astronomy Publications

We present the analytic theory of brown dwarf evolution and the lower mass limit of the hydrogen burning main-sequence stars and introduce some modifications to the existing models. We give an exact expression for the pressure of an ideal nonrelativistic Fermi gas at a finite temperature, therefore allowing for nonzero values of the degeneracy parameter. We review the derivation of surface luminosity using an entropy matching condition and the first-order phase transition between the molecular hydrogen in the outer envelope and the partially ionized hydrogen in the inner region.We also discuss the results of modern simulations of the plasma phase …


Membership Survey Of The Alpha Persei Open Stellar Cluster, Graham Roberts May 2016

Membership Survey Of The Alpha Persei Open Stellar Cluster, Graham Roberts

Scholars Week

Alpha Persei is a young stellar open cluster in our Galaxy. Stellar open clusters are groups of stars that formed at the same time from a single cloud in the interstellar medium. Cluster’s well defined ages allow astronomers to calibrate stellar evolution models with measurements of constituent members, and track the history of star formation in the Milky Way. Alpha Persei is relatively young, on the scale of around 100 million years old (Shiekhi et al. 2016). Alpha Per provides a key laboratory for studying the properties, such as mass, radii, temperature, etc. of young stars. We have yet to …


Elements Of The Mathematical Formulation Of Quantum Mechanics, Keunjae Go May 2016

Elements Of The Mathematical Formulation Of Quantum Mechanics, Keunjae Go

Senior Honors Papers / Undergraduate Theses

In this paper, we will explore some of the basic elements of the mathematical formulation of quantum mechanics. In the first section, I will list the motivations for introducing a probability model that is quite different from that of the classical probability theory, but still shares quite a few significant commonalities. Later in the paper, I will discuss the quantum probability theory in detail, while paying a brief attention to some of the axioms (by Birkhoff and von Neumann) that illustrate both the commonalities and differences between classical mechanics and quantum mechanics. This paper will end with a presentation of …


Measurements Of Photon Beam Intensity At The High Intensity Gamma-Ray Source (Higs) Facility For Astrophysically Relevant Photodisintegration Reaction Cross Section, Evan G. Meekins May 2016

Measurements Of Photon Beam Intensity At The High Intensity Gamma-Ray Source (Higs) Facility For Astrophysically Relevant Photodisintegration Reaction Cross Section, Evan G. Meekins

Senior Honors Projects, 2010-2019

How nuclear reactions in stars and stellar explosions such as supernovae have forged the elements out of hydrogen and helium leftover from the Big Bang is a longstanding, still timely research topic in nuclear astrophysics. Although there is a fairly complete understanding of the production of the chemical elements and their isotopes up to iron by nuclear fusion in stars, important details concerning the production of the elements from iron to uranium remain puzzling. Current knowledge is that the nucleosynthesis beyond iron proceeds mainly via neutron capture reactions and subsequent electron decays to stability. However, some 35 proton-rich stable isotopes, …


Fundamental Physics With Cold Neutron Beams, Kyle Brandon Grammer May 2016

Fundamental Physics With Cold Neutron Beams, Kyle Brandon Grammer

Doctoral Dissertations

The neutron exhibits rich physics both as a tool for studying materials, particle and nuclear physics, as well as the object of experimental study. The neutron lifetime is an important input to Big Bang Nucleosynthesis models and is currently known only to approximately 0.3\% with the most precise measurements from two different experimental techniques in disagreement by more than 3$\sigma$ [sigma]. Parity violation has been the subject of study since its discovery in 1957. Parity violation experiments provide access to studying the hadronic weak interaction, which is otherwise suppressed by several orders of magnitude below that of the strong interaction. …


Synthesis, Characterization, And Electronic Properties Of Novel 2d Materials : Transition Metal Dichalcogenides And Phosphorene., George Anderson May 2016

Synthesis, Characterization, And Electronic Properties Of Novel 2d Materials : Transition Metal Dichalcogenides And Phosphorene., George Anderson

Electronic Theses and Dissertations

Scaling electronic devices has become paramount. The current work builds upon scaling efforts by developing novel synthesis methods and next generation sensing devices based on 2D materials. A new combination method utilizing thermal evaporation and chemical vapor deposition was developed and analyzed to show the possibilities of Transition Metal Dichalcogenide monolayers and heterostructures. The materials produced from the above process showed high degrees of compositional control in both spatial dimensions and chemical structure. Characterization shows controlled fabrication of heterostructures, which may pave the way for future band gap engineering possibilities. In addition, Phosphorene based field effect transistors, photodetectors, and gas …


Schwarzschild Spacetime And Friedmann-Lemaitre-Robertson-Walker Cosmology, Zachary Cohen May 2016

Schwarzschild Spacetime And Friedmann-Lemaitre-Robertson-Walker Cosmology, Zachary Cohen

Honors Scholar Theses

The advent of General Relativity via Einstein's field equations revolutionized our understanding of gravity in our solar system and universe. The idea of General Relativity posits that gravity is entirely due to the geometry of the universe -- that is, the mass distribution throughout the universe results in the ``curving" of spacetime, which gives us the physics we see on a large scale. In the framework of General Relativity, we find that the universe behaves differently than was predicted in the model of gravitation developed by Newton. We will derive the general relativistic model for a simple system near a …


Dynamical Mechanisms Leading To Equilibration In Two-Component Gases, Stephan De Bievre, Carlos Mejia-Monasterio, Paul Ernest Parris May 2016

Dynamical Mechanisms Leading To Equilibration In Two-Component Gases, Stephan De Bievre, Carlos Mejia-Monasterio, Paul Ernest Parris

Physics Faculty Research & Creative Works

Demonstrating how microscopic dynamics cause large systems to approach thermal equilibrium remains an elusive, longstanding, and actively pursued goal of statistical mechanics. We identify here a dynamical mechanism for thermalization in a general class of two-component dynamical Lorentz gases and prove that each component, even when maintained in a nonequilibrium state itself, can drive the other to a thermal state with a well-defined effective temperature.


Ultracold Trimer Ion Formation Of Rb And K, Michael Cantara Apr 2016

Ultracold Trimer Ion Formation Of Rb And K, Michael Cantara

University Scholar Projects

The cooling of molecules into the ultracold regime allows for high resolution laser spectroscopy that reveals their complex rotational and vibrational structure. As the temperature is lowered towards absolute zero, the kinetic energy of the particles approaches zero, and therefore the Doppler shift approaches zero. With the Doppler shift negligibly small, spectral resolution is now primarily limited by the natural linewidth of the molecular peaks. Further, ultracold temperatures make possible the production of atoms or molecules that will reside in the lowest few states of the system. The high population in a few select states provides stronger and less congested …


Intramolecular Cross-Linking Of Beta Subunits And Pegylation Of Bovine Stroma Free Hemoglobin For Use As A Hemoglobin Based Oxygen Carrier, Gil Salazar Apr 2016

Intramolecular Cross-Linking Of Beta Subunits And Pegylation Of Bovine Stroma Free Hemoglobin For Use As A Hemoglobin Based Oxygen Carrier, Gil Salazar

GS4 Georgia Southern Student Scholars Symposium

Purified Bovine Stroma-Free Hemoglobin's (BSFHb) two beta subunits where intramolecularly cross-linked (BXLHb) using bis(3,5-dibromosalicyl) fumarate (DBBF) and further modified with Polyethylene glycol (BPEGXLHb) for possible use as a Hemoglobin Based Oxygen Carrier (HBOC). Each stage of modification was characterized by size exclusion chromatography and fluorescence methods. We prepared several different molar ratios of DBBF and BSFHb to acquire the highest yield of BXLHb. Cross-linking of the beta subunits will stabilize the whole Hb tetramer from dissociation and prevent unwanted degradation of the HBOC. We prepared a sample modified with PEG (PEGylation) that had a molecular weight of 5kDa. PEGylation increases …


College Of Science And Mathematics Newsletter, Spring 2016, College Of Science And Mathematics, Wright State University Apr 2016

College Of Science And Mathematics Newsletter, Spring 2016, College Of Science And Mathematics, Wright State University

College of Science and Mathematics Newsletters

This 5 page newsletter discusses various happenings within the College of Science and Mathematics. It begins with a letter from the dean, and continues on with news, events, alumni news, and other community news.


The Parallelization And Optimization Of The N-Body Problem Using Openmp And Openmpi, Nicholas J. Carugati Apr 2016

The Parallelization And Optimization Of The N-Body Problem Using Openmp And Openmpi, Nicholas J. Carugati

Student Publications

The focus of this research is exploring the efficient ways we can implement the NBody problem. The N-Body problem, in the field of physics, is a problem in which predicts or simulates the movements of planets and how they interact with each other gravitationally. For this research, we are viewing if the simulation can execute efficiently by delegating the heavy computational work through different cores of a CPU. The approach that is being used to figure this out is by integrating the parallelization API OpenMP and the message-passing library OpenMPI into the code. Rather than all the code executing on …


The Subject Librarian Newsletter, Physics, Spring 2016, Patti Mccall Mar 2016

The Subject Librarian Newsletter, Physics, Spring 2016, Patti Mccall

Libraries' Newsletters

No abstract provided.


Spatio-Temporal Generalization Of The Harris Criterion And Its Application To Diffusive Disorder, Thomas Vojta, Ronald Dickman Mar 2016

Spatio-Temporal Generalization Of The Harris Criterion And Its Application To Diffusive Disorder, Thomas Vojta, Ronald Dickman

Physics Faculty Research & Creative Works

We investigate how a clean continuous phase transition is affected by spatiotemporal disorder, i.e., by an external perturbation that fluctuates in both space and time. We derive a generalization of the Harris criterion for the stability of the clean critical behavior in terms of the space-time correlation function of the external perturbation. As an application, we consider diffusive disorder, i.e., an external perturbation governed by diffusive dynamics, and its effects on a variety of equilibrium and nonequilibrium critical points. We also discuss the relation between diffusive disorder and diffusive dynamical degrees of freedom in the example of model C of …


Surface Effect Of Ferromagnetic Nanoparticles On Transition Between Single- And Multi-Domain Structure Or Between Single-Domain Structure And Superparamagnetic Phase, Hind Adawi Jan 2016

Surface Effect Of Ferromagnetic Nanoparticles On Transition Between Single- And Multi-Domain Structure Or Between Single-Domain Structure And Superparamagnetic Phase, Hind Adawi

Browse all Theses and Dissertations

Surface effects on critical dimensions of ferromagnetic nanoparticles were studied. Algebraic equations were derived and numerically solved for critical radius RC2 of ferromagnetic nanoparticles describing the transition between single- and multi-domain magnetic structure. Results were analyzed to illustrate the effect of surface parameters related to saturation magnetization a, exchange interaction ß, and anisotropy KS on the critical radius of nanoparticles with a core value of anisotropy KV. Available experimental data for MnBi, FePt, and CoPt or for Fe nanoparticles were used as examples of nanoparticles with high and low values of KV, respectively. Our studies clearly show that discrepancies existing …


The Acoustics Of Harmon Mutes, Zachary T. Armstrong Jan 2016

The Acoustics Of Harmon Mutes, Zachary T. Armstrong

Summer Research

The acoustic properties of trumpets have been studied thoroughly, but little to no previous work has been done regarding the acoustics of trumpet mutes. Harmon mutes have a distinctively "buzzy" sound when they are used in performance and it is the opinion of a large number of trumpet players who use Harmon mutes that they should be dented before they are used in performance. The work presented here is an attempt to determine the acoustical properties of Harmon mutes and how they change when the mute is dented. If Harmon mutes are better understood, then a more informed decision as …