Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Graphene

Discipline
Institution
Publication
Publication Type
File Type

Articles 1 - 30 of 47

Full-Text Articles in Physical Sciences and Mathematics

Electrochemical Properties Of Graphene/Porous Nano-Silicon Anode, Chun-Li Li, Guang Yang, Ping Zhang, Zhi-Yu Jiang Dec 2015

Electrochemical Properties Of Graphene/Porous Nano-Silicon Anode, Chun-Li Li, Guang Yang, Ping Zhang, Zhi-Yu Jiang

Journal of Electrochemistry

Porous nano-silicon (Si) was prepared by acid etching Al-Si alloy powder method, and used as an active material for fabricating a grapene/porous nano-Si electrode. The results of SEM and TEM measurements indicated that porous nano-Si powder was uniformly mixed with graphene by emulsification dispersion-ultrasonication method. As an anode for lithium ion battery, the graphene/porous nano-Si electrode presented relatively high performance in 1 mol•L-1 LiPF6/EC:DMC = 1:1(by volume) + 1.5% (by mass) VC solution. At the charge and discharge current densities of 0.5A•g-1, the first discharge capacity was 1768.6 mAh•g-1 with coulombic efficiency of 68.3%. The discharge …


Formation And Processability Of Liquid Crystalline Dispersion Graphene Oxide, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Joselito M. Razal, Simon E. Moulton, Gordon G. Wallace Dec 2015

Formation And Processability Of Liquid Crystalline Dispersion Graphene Oxide, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Joselito M. Razal, Simon E. Moulton, Gordon G. Wallace

Gordon Wallace

Rational control over the formation and processability, and consequently final properties of graphene oxide liquid crystalline dispersions has been a long-standing goal in the development of bottom-up device fabrication processes. Here we report, the principal conditions through which such levels of control can be exercised to fine-tune dispersion properties for further processing.


A Review Of Solar And Visible Light Active Tio2 Photocatalysis For Treating Bacteria, Cyanotoxins And Contaminants Of Emerging Concern, Rachel Fagan, Declan Mccormack, Suresh Pillai, Dionysios Dionysiou Dec 2015

A Review Of Solar And Visible Light Active Tio2 Photocatalysis For Treating Bacteria, Cyanotoxins And Contaminants Of Emerging Concern, Rachel Fagan, Declan Mccormack, Suresh Pillai, Dionysios Dionysiou

Articles

Research into the development of solar and visible light active photocatalysts has been significantly increased in recent years due to its wide range of applications in treating contaminants of emerging concern (CECs), endocrine disrupting compounds (EDCs), bacteria and cyanotoxins. Solar photocatalysis is found to be highly effective in treating a wide range of CECs from sources such as pharmaceuticals, steroids, antibiotics, phthalates, disinfectants, pesticides, fragrances (musk), preservatives and additives. Similarly, a number of EDCs including polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), bisphenol A (BPA), organotins (OTs), volatile organic compounds (VOCs), natural and synthetic estrogenic and androgenic chemicals, pesticides, and heavy …


Understanding The Influence Of Non-Covalent Interactions And Nanoparticle Geometries In Carbon Based Polymer Nanocomposites, Bradley Carroll Miller Dec 2015

Understanding The Influence Of Non-Covalent Interactions And Nanoparticle Geometries In Carbon Based Polymer Nanocomposites, Bradley Carroll Miller

Doctoral Dissertations

Low-loading polymer nanocomposites (PNC) are an area of great interest in polymer science. As nanoparticles (NP) are typically expensive in comparison to matrix materials; the low loading regime makes the most efficient use of materials, and represents the optimum for realizing cost effective, high-performance PNCs. However, formulating effective low-loading composites is not without challenges. In addition to the typical requirement of good dispersion for efficient translation of NP properties to the bulk, low-loading composites can sometimes exhibit anomalous (non-classical) dynamics, and unpredictable properties. It is within this context that this thesis aims to examine the effects of NP geometry and …


Enhanced Li Capacity In Functionalized Graphene: A First Principle Study With Van Der Waals Correction, Rajiv K. Chouhan, Pushpa Raghani Oct 2015

Enhanced Li Capacity In Functionalized Graphene: A First Principle Study With Van Der Waals Correction, Rajiv K. Chouhan, Pushpa Raghani

Pushpa Raghani

We have investigated the adsorption of Li on graphene oxide using density functional theory. We show a novel and simple approach to achieve a positive lithiation potential on epoxy and hydroxyl functionalized graphene, compared to the negative lithiation potential that has been found on prestine graphene. We included the van der Waals correction into the calculation so as to get a better picture of weak interactions. A positive lithiation potential suggests a favorable adsorption of Li on graphene oxide sheets that can lead to an increase in the specific capacity, which in turn can be used as an anode material …


Enhanced Li Capacity In Functionalized Graphene: A First Principle Study With Van Der Waals Correction, Rajiv K. Chouhan, Pushpa Raghani Sep 2015

Enhanced Li Capacity In Functionalized Graphene: A First Principle Study With Van Der Waals Correction, Rajiv K. Chouhan, Pushpa Raghani

Physics Faculty Publications and Presentations

We have investigated the adsorption of Li on graphene oxide using density functional theory. We show a novel and simple approach to achieve a positive lithiation potential on epoxy and hydroxyl functionalized graphene, compared to the negative lithiation potential that has been found on prestine graphene. We included the van der Waals correction into the calculation so as to get a better picture of weak interactions. A positive lithiation potential suggests a favorable adsorption of Li on graphene oxide sheets that can lead to an increase in the specific capacity, which in turn can be used as an anode material …


Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong Aug 2015

Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

The Mn3O4/Graphene composites were synthesized by hydrothermal method with the in-situ redox reaction of graphene oxide (GO) and manganese acetate (Mn(Ac)2). The phase structures and morphologies of the materials were characterized by XRD, SEM and TEM. The XPS and IR techniques were used for studying the residual function groups of reduced graphene oxide (RGO). The electrochemical performances of the hybrids were tested in a coin cell. Results showed that the composites prepared with the addition of ammonia water (RM-A) have better performance. The graphenes in RM-A were better-reduced and the Mn3O4 particles were much …


Studies Of Optical And Electronic Properties Of Nanoparticles For Solar Energy Conversion, Caitlin Kruse, Libai Huang Aug 2015

Studies Of Optical And Electronic Properties Of Nanoparticles For Solar Energy Conversion, Caitlin Kruse, Libai Huang

The Summer Undergraduate Research Fellowship (SURF) Symposium

The higher energy needs for today's technological society requires sustainable and renewable energy source, such as solar energy. This study focuses on using semiconducting quantum dots and fluorescent dyes as light absorbers for solar energy conversion devices such as solar cells. Quantum dots are small nanocrystals (usually 2-10 nm in diameter) with tunable absorbing properties. The smaller the dot, the shorter the wavelength being absorbed. Quantum dots are extremely efficient light absorbers and emitters. Fluorescent dyes have a high quantum yield. In order to examine the energy conversion, cadmium selenide (CdSe) quantum dots and Rhodamine 6G (R6G) dye were spin …


Tunneling Experiments With Dirac Electrons In Graphene Heterojunctions, Shivani Rajput Aug 2015

Tunneling Experiments With Dirac Electrons In Graphene Heterojunctions, Shivani Rajput

Theses and Dissertations

This dissertation presents results of scanning tunneling microscopy/spectroscopy experiments performed on graphene, a two-dimensional membrane of carbon atoms arranged in a honeycomb lattice, where charge carriers behave like massless fermions described by the Dirac equation. Our findings demonstrate that interface engineering is a viable route to control and further enhance the electronic properties of graphene.

In the first experiment, by transferring chemical vapor deposited (CVD) graphene onto substrates of opposite polarization - H-terminated Si-face and C-faces of hexagonal silicon carbide (SiC), we show that the type of charge carrier in graphene can be controlled by substrate polarization. Furthermore, we find …


Synthesis Of Graphene Wrapped Li-Rich Layered Metal Oxide And Its Electrochemical Performance, Meng-Yan Hou, Ke Wang, Xiao-Li Dong, Yong-Yao Xia Jun 2015

Synthesis Of Graphene Wrapped Li-Rich Layered Metal Oxide And Its Electrochemical Performance, Meng-Yan Hou, Ke Wang, Xiao-Li Dong, Yong-Yao Xia

Journal of Electrochemistry

In present work, lithium-rich layered transition metal oxide (LLO) was synthesized by a co-precipitation method in combination with a solid-state reaction. The graphene wrapped Li-rich layered oxide composite (LLO/Gra) was obtained by sintering the LLO/GO composite at 300 oC for 30 min in an air. The morphologies and the electrochemical performances were characterized by means of SEM, TEM, XRD, XPS, EIS and charge/discharge tests. The results indicated that the LLOe particles were uniformly wrapped with graphene. The resulting material exhibited better rate capability than that of pristine LLO since the wrapped graphene demonstrated the enhanced electronic conductivity. Accordingly, the …


Kinetic Study Of The Oxygen Reduction Reaction On Α-Ni(Oh)2 And Α-Ni(Oh)2 Supported On Graphene Oxide, Elaheh Farjami, L. Jay Deiner Jun 2015

Kinetic Study Of The Oxygen Reduction Reaction On Α-Ni(Oh)2 And Α-Ni(Oh)2 Supported On Graphene Oxide, Elaheh Farjami, L. Jay Deiner

Publications and Research

The kinetics of the oxygen reduction reaction on α-Ni(OH)2 and α-Ni(OH)2 supported on graphene oxide (α-Ni(OH)2/GO) were investigated using rotating disk linear sweep voltammetry in alkaline solutions of varying oxygen and hydroxyl concentrations. Over the full hydroxyl concentration range (0.05 M to 0.5M), α-Ni(OH)2/GO displayed higher activity than unsupported α-Ni(OH)2. The electron transfer numbers were 2.9 ± 0.2 for α-Ni(OH)2, 3.4 ± 0.1 for α-Ni(OH)2/GO at low [OH−], and 3.8–3.9 for α-Ni(OH)2/GO at high [OH−]. Compared to α-Ni(OH)2, α-Ni(OH)2/GO displayed higher chemical reaction rate constants and higher electron transfer rate constants. These differences suggest that the synergy between the α-Ni(OH)2 …


Graphene Oxide Dispersions: Tuning Rheology To Enable Fabrication, Sina Naficy, Rouhollah Jalili, Seyed Hamed Aboutalebi, Robert A. Gorkin Iii, Konstantin Konstantinov, Peter C. Innis, Geoffrey M. Spinks, Philippe Poulin, Gordon G. Wallace Jun 2015

Graphene Oxide Dispersions: Tuning Rheology To Enable Fabrication, Sina Naficy, Rouhollah Jalili, Seyed Hamed Aboutalebi, Robert A. Gorkin Iii, Konstantin Konstantinov, Peter C. Innis, Geoffrey M. Spinks, Philippe Poulin, Gordon G. Wallace

Robert Gorkin III

Here, we show that graphene oxide (GO) dispersions exhibit unique viscoelastic properties, making them a new class of soft materials. The fundamental insights accrued here provide the basis for the development of fabrication protocols for these two-dimensional soft materials, in a diverse array of processing techniques.


Measuring Charge Carrier Mobility In Graphene, Christina A. Harmon May 2015

Measuring Charge Carrier Mobility In Graphene, Christina A. Harmon

Senior Theses

This research reports measurements of electron mobility in Graphene Field Effect Transistors (GFET), gated with liquid. Mobility is a quantity describing how easily charge carriers move through a material. GFET biosensors have the greatest sensitivity when the mobility is high; therefore, increasing mobility should improve sensitivity of these and similar devices. An optimal method was established for preparing samples and taking measurements of a liquid-gate device. Sheet conductivity was measured using van der Pauw geometry and carrier density was determined from measurements of the liquid-gate capacitance. It is shown that mobility improves after the graphene surface is cleaned by an …


Modelling Transient Terahertz Magneto-Spectroscopy Measurements Of P-Type Cvd Graphene Leading To A Negative Photoconductivity., Rhyan Foo Kune May 2015

Modelling Transient Terahertz Magneto-Spectroscopy Measurements Of P-Type Cvd Graphene Leading To A Negative Photoconductivity., Rhyan Foo Kune

Macalester Journal of Physics and Astronomy

Ultrafast Terahertz (THz) Magneto-Spectroscopy (UTMS) measurements were performed on p-type CVD graphene sample to investigate the intrinsic carrier dynamics of the material. We investigated static and time-resolved THz transmission measurements, in which the sample was photo-excited by a near infrared (NIR) pump pulse, in order to study its behavior in a magnetic field. In these measurements the free carriers were probed to independently measure the carrier density and scattering rate in this film. We observed, in our graphene sample, an increase in transmission related to a negative photoconductivity (decrease in conductivity after photoexcitation) consistent with previous research. This decrease is …


Mid-Ir Excitation Of Graphene, Andrew R. Banman, James Heyman May 2015

Mid-Ir Excitation Of Graphene, Andrew R. Banman, James Heyman

Macalester Journal of Physics and Astronomy

In this research we investigate how the conductivity of graphene changes in response to mid-infrared photoexcitation. Our p-type sample was formed through chemical vapor deposition. Pump/probe methodology produced the time-resolved Terahertz transmission, from which the photoconductivity was calculated. We probed the sample with energies above and below the Fermi energy, which was determined by Fourier transform infrared spectroscopy. Our results support a model in which heating of the electron gas, leading to high carrier scattering rates, is responsible for a decrease in conductivity. We observe this negative photoconductivity at all pump energies, allowing us to rule out the possibility of …


Mirror Buckling Transitions In Freestanding Graphene Membranes Induced Through Scanning Tunneling Microscopy, James Kevin Schoelz May 2015

Mirror Buckling Transitions In Freestanding Graphene Membranes Induced Through Scanning Tunneling Microscopy, James Kevin Schoelz

Graduate Theses and Dissertations

Graphene has the ability to provide for a technological revolution. First isolated and characterized in 2004, this material shows promise in the field of flexible electronics. The electronic properties of graphene can be tuned by controlling the shape of the membrane. Of particular interest in this endeavor are the thermal ripples in graphene membranes. Years of theoretical work by such luminaries as Lev Landau, Rudolf Peierls, David Mermin and Herbert Wagner have established that 2D crystals should not be thermodynamically stable. Experimental research on thin films has supported this finding. Yet graphene exists, and freestanding graphene films have been grown …


Optical Characterization Of Carbon Nanotube Forests, Brian D. Wood May 2015

Optical Characterization Of Carbon Nanotube Forests, Brian D. Wood

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Carbon nanotube forests are vertically grown tubular formations of graphene. Due to their inherent microstructure and geometry, they are ideal light absorbers over a broad spectrum, making this material an excellent absorber in applications such as radiometry, optical calibration, and stray light suppression. Samples were made with several growth conditions and substrates to provide forests of different morphologies. Optical data of these samples were gathered by taking spectroscopic reflectance and transmittance measurements in the mid-infrared spectral range. Results were correlated to the various forest morphologies. From this, the conditions necessary to maximize the absorption of the forests were found and …


So(8) Fermion Dynamical Symmetry In Graphene, Matthew Murphy May 2015

So(8) Fermion Dynamical Symmetry In Graphene, Matthew Murphy

Chancellor’s Honors Program Projects

No abstract provided.


The Science Of Two Dimensional Materials (Powerpoint), Jun Yan Jan 2015

The Science Of Two Dimensional Materials (Powerpoint), Jun Yan

Nanotechnology Teacher Summer Institutes

Graphene is a single atomic sheet of graphite.

Exercise: how much graphene do we need to cover the surface of the empire state building?


Electronic Transport Properties Of Carbon Nanotubes: The Impact Of Atomic Charged Impurities, Ryuichi Tsuchikawa Jan 2015

Electronic Transport Properties Of Carbon Nanotubes: The Impact Of Atomic Charged Impurities, Ryuichi Tsuchikawa

Electronic Theses and Dissertations

Even changing one atom in nanoscale materials is expected to alter their properties due to their small physical sizes. Such sensitivity can be utilized to modify materials' properties from bottom up and is essential for the utility of nanoscale materials. As such, the impact of extrinsic atomic adsorbates was measured on pristine graphene and a network of carbon nanotubes using atomic hydrogen, cesium atoms, and dye molecules. In order to further quantify such an atomic influence, the resistance induced by a single potassium atom on metallic and semiconducting carbon nanotubes was measured for the first time. Carbon nanotubes are sensitive …


Fabrication And Characterization Of A Vertically-Oriented Graphene Supercapacitor, Patrick R. Rice, Jiaxin Cui, Ahmad Badr, Michael M. Oye, Jessica E. Koehne, Meyya Meyyappan Jan 2015

Fabrication And Characterization Of A Vertically-Oriented Graphene Supercapacitor, Patrick R. Rice, Jiaxin Cui, Ahmad Badr, Michael M. Oye, Jessica E. Koehne, Meyya Meyyappan

STAR Program Research Presentations

Supercapacitors, otherwise known as electrical double layer capacitors, are a new type of electrochemical capacitor whose storage capacity is governed by two principals: the electrostatic storage achieved by a separation of charge at the interface of an electrode with an electrolytic solution, and pseudocapacitance, whose electrical energy is achieved by faradaic redox reactions. This project reports the synthesis and characterization of vertically-oriented graphene grown on copper substrates as electrodes in electric double-layer capacitor. Graphene is a two-dimensional pure carbon material with a high potential for energy storage. With vertically-grown graphene, an exponentially-larger surface area is made available, allowing an increase …


Using Graphene To Control Magnetic Anisotropy And Interaction Between Supported Clusters, Sanjubala Sahoo, M Fhokrul Islam, Shiv N. Khanna Jan 2015

Using Graphene To Control Magnetic Anisotropy And Interaction Between Supported Clusters, Sanjubala Sahoo, M Fhokrul Islam, Shiv N. Khanna

Physics Publications

Stabilization of magnetic order in clusters/nanoparticles at elevated temperatures is a fundamentally challenging problem. The magnetic anisotropy energy (MAE) that prevents the thermal fluctuations of the magnetization direction can be around 1–10 K in free transition metal clusters of around a dozen atoms. Here we demonstrate that a graphene support can lead to an order of magnitude enhancement in the anisotropy of supported species. Our studies show that the MAE of supported Co5 and Co13 clusters on graphene increase by factors of 2.6 and 25, respectively. The enhancement is linked to the splitting of selected electronic orbitals that leads to …


Nanoelectronic Devices Using Carbon Nanotubes And Graphene Electrodes: Fabrication And Electronic Transport Investigations, Narae Kang Jan 2015

Nanoelectronic Devices Using Carbon Nanotubes And Graphene Electrodes: Fabrication And Electronic Transport Investigations, Narae Kang

Electronic Theses and Dissertations

Fabrication of high-performance electronic devices using the novel semiconductors is essential for developing future electronics which can be applicable in large-area, flexible and transparent displays, sensors and solar cells. One of the major bottlenecks in the fabrication of high-performance devices is a large interfacial barrier formation at metal/semiconductor interface originated from Schottky barrier and interfacial dipole barrier which causes inefficient charge injection at the interface. Therefore, having a favorable contact at electrode/semiconductor is highly desirable for high-performance devices fabrication. In this dissertation, the fabrication of nanoelectronic devices and investigation of their transport properties using carbon nanotubes (CNTs) and graphene as …


Synthesis, Integration, And Physical Characterization Of Graphene And Carbon Nanotubes, David P. Hunley Jan 2015

Synthesis, Integration, And Physical Characterization Of Graphene And Carbon Nanotubes, David P. Hunley

Theses and Dissertations--Physics and Astronomy

Graphene and carbon nanotubes are among the hottest topics in physics today. Both materials exhibit numerous remarkable mechanical, electrical, optical, and thermal properties that make them promising materials for use in a large number of diverse applications, especially in the field of nanotechnology. One of the ultimate goals driving the fields of nanoscience and nanotechnology has been the attainment of atomically precise construction of intricate integrated systems consisting of materials with diverse behavior. Specifically, it is desirable to have high performance conductors, semiconductors, and insulators integrated into complex atomically precise arrangements. This dissertation represents the culmination of work that has …


Flexible Free-Standing Graphene Paper With Interconnected Porous Structure For Energy Storage, Kewei Shu, Caiyun Wang, Sha Li, Chen Zhao, Yang Yang, Hua-Kun Liu, Gordon G. Wallace Jan 2015

Flexible Free-Standing Graphene Paper With Interconnected Porous Structure For Energy Storage, Kewei Shu, Caiyun Wang, Sha Li, Chen Zhao, Yang Yang, Hua-Kun Liu, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

A novel porous graphene paper is prepared via freeze drying a wet graphene oxide gel, followed by thermal and chemical reduction. The macroscopic structure of the formed graphene paper can be tuned by the water content in the gel precursor. With 92% water content, an interconnected macroporous network can be formed. This porous graphene (PG) paper exhibits excellent electrochemical properties. It can deliver a high discharge capacity of 420 mA h g−1 at a current density of 2000 mA g−1 when used as binder-free lithium ion battery anode. PG paper exhibits a specific capacitance of 137 F g …


N-Doped Crumpled Graphene Derived From Vapor Phase Deposition Of Ppy On Graphene Aerogel As An Efficient Oxygen Reduction Reaction Electrocatalyst, Meng Wang, Jiazhao Wang, Yuyang Hou, Dongqi Shi, David Wexler, Simon D. Poynton, Robert C.T. Slade, Weimin Zhang, Hua-Kun Liu, Jun Chen Jan 2015

N-Doped Crumpled Graphene Derived From Vapor Phase Deposition Of Ppy On Graphene Aerogel As An Efficient Oxygen Reduction Reaction Electrocatalyst, Meng Wang, Jiazhao Wang, Yuyang Hou, Dongqi Shi, David Wexler, Simon D. Poynton, Robert C.T. Slade, Weimin Zhang, Hua-Kun Liu, Jun Chen

Australian Institute for Innovative Materials - Papers

Nitrogen-doped crumpled graphene (NCG) is successfully synthesized via vapor phase deposition of polypyrrole onto graphene aerogel followed by thermal treatment. The NCG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable electrocatalytic performance with the commercial Pt/C in alkaline membrane exchange fuel cells because of the well-regulated nitrogen doping and the robust micro-3D crumpled porous nanostructure.


Chemically Converted Graphene: Scalable Chemistries To Enable Processing And Fabrication, Sanjeev Gambhir, Rouhollah Jalili, David L. Officer, Gordon G. Wallace Jan 2015

Chemically Converted Graphene: Scalable Chemistries To Enable Processing And Fabrication, Sanjeev Gambhir, Rouhollah Jalili, David L. Officer, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Graphene, a nanocarbon with exceptional physical and electronic properties, has the potential to be utilized in a myriad of applications and devices. However, this will only be achieved if scalable, processable forms of graphene are developed along with ways to fabricate these forms into material structures and devices. In this review, we provide a comprehensive overview of the chemistries suitable for the development of aqueous and organic solvent graphene dispersions and their use for the preparation of a variety of polymer composites, materials useful for the fabrication of graphene-containing structures and devices. Fabrication of the processable graphene dispersions or composites …


Reduced Graphene Oxide And Polypyrrole/Reduced Graphene Oxide Composite Coated Stretchable Fabric Electrodes For Supercapacitor Application, Chen Zhao, Kewei Shu, Caiyun Wang, Sanjeev Gambhir, Gordon G. Wallace Jan 2015

Reduced Graphene Oxide And Polypyrrole/Reduced Graphene Oxide Composite Coated Stretchable Fabric Electrodes For Supercapacitor Application, Chen Zhao, Kewei Shu, Caiyun Wang, Sanjeev Gambhir, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The advent of self-powered functional garments has given rise to a demand for stretchable energy storage devices that are amendable to integration into textile structures. The electromaterials (anode, cathode and separator) are expected to sustain a deformation of 3% to 55% associated with body movement. Here, we report a stretchable fabric supercapacitor electrode using commonly available nylon lycra fabric as the substrate and graphene oxide (GO) as a dyestuff. It was prepared via a facile dyeing approach followed by a mild chemical reduction. This reduced graphene oxide (rGO) coated fabric electrode retains conductivity at an applied strain of up to …


A Bio-Friendly, Green Route To Processable, Biocompatible Graphene/Polymer Composites, Eoin Murray, Sepidar Sayyar, Brianna C. Thompson, Robert A. Gorkin Iii, David L. Officer, Gordon G. Wallace Jan 2015

A Bio-Friendly, Green Route To Processable, Biocompatible Graphene/Polymer Composites, Eoin Murray, Sepidar Sayyar, Brianna C. Thompson, Robert A. Gorkin Iii, David L. Officer, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Grapene-based polymer composites are a very promising class of compounds for tissue engineering scaffolds. However, in general the methods of synthesis are environmentally hazardous and residual toxic materials can affect the biocompatibility significantly. In this paper a simple, scalable, environmentally-friendly, microwave-assisted synthesis is described that results in conducting graphene/polycaprolactone composites that retain the processability and biocompatibility of the pristine polymer without introducing possibly hazardous reducing agents. Composites of polycaprolactone and graphene oxide were synthesised in a single step by the ring-opening polymerisation of ε-caprolactone in the presence of dispersed graphene oxide nanosheets under microwave irradiation. The graphene oxide provides a …


A Facile Approach For Fabrication Of Mechanically Strong Graphene/Polypyrrole Films With Large Areal Capacitance For Supercapacitor Applications, Yu Ge, Caiyun Wang, Kewei Shu, Chen Zhao, Xiaoteng Jia, Sanjeev Gambhir, Gordon G. Wallace Jan 2015

A Facile Approach For Fabrication Of Mechanically Strong Graphene/Polypyrrole Films With Large Areal Capacitance For Supercapacitor Applications, Yu Ge, Caiyun Wang, Kewei Shu, Chen Zhao, Xiaoteng Jia, Sanjeev Gambhir, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Substantial progress has been made in free-standing flexible graphene-based films for flexible supercapacitors. However, there are limited reports on the areal capacitance of these electrodes, which is an important parameter for practical applications, especially in miniaturized electronic devices. Herein we report the facile fabrication of robust flexible graphene/polypyrrole nanoparticle films. PPy NPs act as the "spacer" between graphene layers creating hierarchical structures. This free-standing film shows excellent mechanical properties with a fracture strength of 16.89 MPa and Young's modulus of 11.77 MPa. The resulting film electrode delivers a large areal specific capacitance of 216 mF cm−2, which is higher or …