Open Access. Powered by Scholars. Published by Universities.^{®}

#
Physical Sciences and Mathematics *Commons*^{™}

Open Access. Powered by Scholars. Published by Universities.^{®}

Articles **1** - **16** of ** 16**

## Full-Text Articles in Physical Sciences and Mathematics

Wave Heating And Jeans Escape In The Martian Upper Atmosphere, R. L. Walterscheid, Michael P. Hickey Ph.D., G. Schubert

#### Wave Heating And Jeans Escape In The Martian Upper Atmosphere, R. L. Walterscheid, Michael P. Hickey Ph.D., G. Schubert

*Publications*

Gusty flow over rough terrain is likely to be a significant source of fast gravity waves and acoustic waves in the atmosphere of Mars, as it is in Earth’s atmosphere. Accordingly, we have used a numerical model to study the dissipation in the thermosphere and exosphere of Mars of upward-propagating fast gravity waves and acoustic waves. Model simulations are performed for a range of wave periods and horizontal wavelengths. Wave amplitudes are constrained by the Mars Global Surveyor and Mars Odyssey aerobraking data, and gravity wave phase velocities are limited by occultation data. Dissipating gravity waves heat some regions ...

Numerical And Statistical Evidence For Long-Range Ducted Gravity Wave Propagation Over Halley, Antarctica, J. B. Snively, K. Nielsen, M. P. Hickey, C. J. Heale, M. J. Taylor, T. Moffat-Griffin

#### Numerical And Statistical Evidence For Long-Range Ducted Gravity Wave Propagation Over Halley, Antarctica, J. B. Snively, K. Nielsen, M. P. Hickey, C. J. Heale, M. J. Taylor, T. Moffat-Griffin

*Publications*

Abundant short-period, small-scale gravity waves have been identiﬁed in the mesosphere and lower thermosphere over Halley, Antarctica, via ground-based airglow image data. Although many are observed as freely propagating at the heights of the airglow layers, new results under modeled conditions reveal that a signiﬁcant fraction of these waves may be subject to reﬂections at altitudes above and below.The waves may at times be trapped within broad thermal ducts, spanning from the tropopause or stratopause to the base of the thermosphere (~140 km), which may facilitate long-range propagation (~1000s of km) under favorable wind conditions.

An Intense Traveling Airglow Front In The Upper Mesosphere–Lower Thermosphere With Characteristics Of A Bore Observed Over Alice Springs, Australia, During A Strong 2 Day Wave Episode, R. L. Walterscheid, J. H. Hecht, L. J. Galinas, Michael P. Hickey Ph.D., I. M. Reid

#### An Intense Traveling Airglow Front In The Upper Mesosphere–Lower Thermosphere With Characteristics Of A Bore Observed Over Alice Springs, Australia, During A Strong 2 Day Wave Episode, R. L. Walterscheid, J. H. Hecht, L. J. Galinas, Michael P. Hickey Ph.D., I. M. Reid

*Publications*

The Aerospace Corporation’s Nightglow Imager observed a large step function change in airglow in the form of a traveling front in the OH Meinel (OHM) and O2 atmospheric (O2A) airglow emissions over Alice Springs, Australia, on 2 February 2003. The front exhibited nearly a factor of 2 stepwise increase in the OHM brightness and a stepwise decrease in the O2A brightness. There was significant (~25 K) cooling behind the airglow fronts. The OHM airglow brightness behind the front was among the brightest for Alice Springs that we have measured in 7 years of observations. The event was associated with ...

Ionospheric Signatures Of Tohoku-Oki Tsunami Of March 11, 2011: Model Comparisons Near The Epicenter, David A. Galvan, Attila Komjathy, Michael P. Hickey, Philip Stephens, Jonathan Snively, Y. Tony Song, Mark D. Butala, Anthony J. Mannucci

#### Ionospheric Signatures Of Tohoku-Oki Tsunami Of March 11, 2011: Model Comparisons Near The Epicenter, David A. Galvan, Attila Komjathy, Michael P. Hickey, Philip Stephens, Jonathan Snively, Y. Tony Song, Mark D. Butala, Anthony J. Mannucci

*Publications*

We observe ionospheric perturbations caused by the Tohoku earthquake and tsunami of March 11, 2011. Perturbations near the epicenter were found in measurements of ionospheric total electron content (TEC) from 1198 GPS receivers in the Japanese GEONET network. For the first time for this event, we compare these observations with the estimated magnitude and speed of a tsunami-driven atmospheric gravity wave, using an atmosphere-ionosphere-coupling model and a tsunami model of sea-surface height, respectively. Traveling ionospheric disturbances (TIDs) were observed moving away from the epicenter at approximate speeds of 3400 m/s, 1000 m/s and 200–300 m/s, consistent ...

Gravity Wave Propagation In A Diffusively Separated Gas: Effects On The Total Gas, Michael P. Hickey Ph.D., R. L. Walterscheid

#### Gravity Wave Propagation In A Diffusively Separated Gas: Effects On The Total Gas, Michael P. Hickey Ph.D., R. L. Walterscheid

*Publications*

We present a full-wave model that simulates acoustic-gravity wave propagation in a binary-gas mixture of atomic oxygen and molecular nitrogen, including molecular viscosity and thermal conductivity appropriately partitioned between the two gases. Compositional effects include the collisional transfer of heat and momentum by mutual diffusion between the two gases. An important result of compositional effects is that the velocity and temperature summed over species can be significantly different from the results of one-gas models with the same height dependent mean molecular weight (M(z)). We compare the results of our binary-gas model to two one-gas full-wave models: one where M ...

Gravity Wave Heating And Cooling Of The Thermosphere: Sensible Heat Flux And Viscous Flux Of Kinetic Energy, Michael P. Hickey Ph.D., R. L. Walterscheid, G. Schubert

#### Gravity Wave Heating And Cooling Of The Thermosphere: Sensible Heat Flux And Viscous Flux Of Kinetic Energy, Michael P. Hickey Ph.D., R. L. Walterscheid, G. Schubert

*Publications*

Total wave heating is the sum of the convergence of the sensible heat flux and the divergence of the viscous flux of wave kinetic energy. Numerical simulations, using a full-wave model of the viscous damping of atmospheric gravity waves propagating in a nonisothermal atmosphere, are carried out to explore the relative contributions of these sources of wave heating as a function of wave properties and altitude. It is shown that the sensible heat flux always dominates in the lower thermosphere, giving a lower region of heating and an upper stronger region of cooling. The heating due to the divergence of ...

Group Velocity And Energy Flux In The Thermosphere: Limits On The Validity Of Group Velocity In A Viscous Atmosphere, R. L. Walterscheid, Michael P. Hickey Ph.D.

#### Group Velocity And Energy Flux In The Thermosphere: Limits On The Validity Of Group Velocity In A Viscous Atmosphere, R. L. Walterscheid, Michael P. Hickey Ph.D.

*Publications*

The response to wave forcing of finite duration comprises a transient forerunner and the steady state signal (or simply the signal). It is the latter that carries information on the spectral content of the forcing, and the signal velocity is the velocity at which wave energy flows. To the extent that group velocity is a good measure of the energy flow velocity, the ray‐tracing formalism is a valid description of signal propagation. We have examined vertical group velocities as a measure of vertical energy flow velocity for gravity and acoustic waves propagating into the dissipative lower thermosphere. We find ...

Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid

#### Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid

*Publications*

A spectral full‐wave model is used to study the upward propagation of a gravity wave disturbance and its effect on atmospheric nightglow emissions. Gravity waves are generated by a surface displacement that mimics a tsunami having a maximum amplitude of 0.5 m, a characteristic horizontal wavelength of 400 km, and a horizontal phase speed of 200 m/s. The gravity wave disturbance can reach F region altitudes before significant viscous dissipation occurs. The response of the OH Meinel nightglow in the mesopause region (∼87 km altitude) produces relative brightness fluctuations, which are ∼1% of the mean for overhead ...

Gravity Wave Ducting In The Upper Mesosphere And Lower Thermosphere Duct System, R. L. Walterscheid, Michael P. Hickey Ph.D.

#### Gravity Wave Ducting In The Upper Mesosphere And Lower Thermosphere Duct System, R. L. Walterscheid, Michael P. Hickey Ph.D.

*Publications*

We report on a numerical study of gravity wave propagation in a pair of ducts located in a region where dramatic changes in the airglow most likely associated with ducted wave trains are observed. We examine ducting in an upper mesosphere inversion (INV) and an always present lower thermosphere stable layer (LTD) for a range of phase speeds and horizontal wavelengths characteristic of ducting events. We analyze the propagation and modal structure of ducted waves for backgrounds with increasing realism, starting with a climatological temperature profile where only the LTD is present. In succession, we add the INV based on ...

Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid

#### Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid

*Publications*

Recent observations have revealed large F-region electron density perturbations (~100%) and total electron content (TEC) perturbations (~30%) that appear to be correlated with tsunamis. The characteristic speed and horizontal wavelength of the disturbances are ~200 m/s and ~400 km. We describe numerical simulations using our spectral full-wave model (SFWM) of the upward propagation of a spectrum of gravity waves forced by a tsunami, and the interaction of these waves with the F-region ionosphere. The SFWM describes the propagation of linear, steady-state acoustic-gravity waves in a nonisothermal atmosphere with the inclusion of eddy and molecular diffusion of heat and momentum ...

Numerical Modeling Of A Gravity Wave Packet Ducted By The Thermal Structure Of The Atmosphere, Yonghui Yu, Michael P. Hickey Ph.D.

#### Numerical Modeling Of A Gravity Wave Packet Ducted By The Thermal Structure Of The Atmosphere, Yonghui Yu, Michael P. Hickey Ph.D.

*Publications*

A time-dependent and fully nonlinear numerical model is employed to solve the Navier-Stokes equations in two spatial dimensions and to describe the propagation of a Gaussian gravity wave packet generated in the troposphere. A Fourier spectral analysis is used to analyze the frequency power spectra of the wave packet, which propagates through and dwells within several thermal ducting regions. The frequency power spectra of the wave packet are derived at several discrete altitudes, which allow us to determine the evolution of the packet. This spectral analysis also clearly reveals the existence of a stratospheric duct, a mesospheric and lower thermospheric ...

Simulated Ducting Of High-Frequency Atmospheric Gravity Waves In The Presence Of Background Winds, Yonghui Yu, Michael P. Hickey Ph.D.

#### Simulated Ducting Of High-Frequency Atmospheric Gravity Waves In The Presence Of Background Winds, Yonghui Yu, Michael P. Hickey Ph.D.

*Publications*

A new nonlinear and time-dependent model is used to derive the total perturbation energy flux of two gravity wave packets propagating from the troposphere to the lower thermosphere. They are excited by a heat source and respectively propagate in an eastward and westward direction in the presence of a zonal wind. Analysis of the refractive index, the power spectra and the total perturbation energy flux allows us to correctly interpret the ducting characteristics of these two wave packets. In our study the wind acts as a directional filter to the wave propagations and causes noticeable spectral variations at higher altitudes ...

Time-Resolved Ducting Of Atmospheric Acoustic-Gravity Waves By Analysis Of The Vertical Energy Flux, Yonghui Yu, Michael P. Hickey Ph.D.

#### Time-Resolved Ducting Of Atmospheric Acoustic-Gravity Waves By Analysis Of The Vertical Energy Flux, Yonghui Yu, Michael P. Hickey Ph.D.

*Publications*

A new 2-D time-dependent model is used to simulate the propagation of an acoustic-gravity wave packet in the atmosphere. A Gaussian tropospheric heat source is assumed with a forcing period of 6.276 minutes. The atmospheric thermal structure creates three discrete wave ducts in the stratosphere, mesosphere, and lower thermosphere, respectively. The horizontally averaged vertical energy flux is derived over altitude and time in order to examine the time-resolved ducting. This ducting is characterized by alternating upward and downward energy fluxes within a particular duct, which clearly show the reflections occurring from the duct boundaries. These ducting simulations are the ...

Acoustic Waves Generated By Gusty Flow Over Hilly Terrain, R. L. Walterscheid, Michael P. Hickey Ph.D.

#### Acoustic Waves Generated By Gusty Flow Over Hilly Terrain, R. L. Walterscheid, Michael P. Hickey Ph.D.

*Publications*

We examine the generation of acoustic waves by gusty flow over hilly terrain. We use simple theoretical models of the interaction between terrain and eddies and a linear model of acoustic-gravity wave propagation. The calculations presented here suggest that over a dense array of geographically extensive sources orographically generated vertically propagating acoustic waves can be a significant cause of thermospheric heating. This heating may account in good part for the thermospheric hot spot near the Andes reported by Meriwether et al. (1996, 1997).

Physical Processes In Acoustic Wave Heating Of The Thermosphere, G. Schubert, Michael P. Hickey Ph.D., R. L. Walterscheid

#### Physical Processes In Acoustic Wave Heating Of The Thermosphere, G. Schubert, Michael P. Hickey Ph.D., R. L. Walterscheid

*Publications*

Upward propagating acoustic waves heat the atmosphere at essentially all heights due to effects of viscous dissipation, sensible heat flux divergence, and Eulerian drift work. Acoustic wave-induced pressure gradient work provides a cooling effect at all heights, but this is overwhelmed by the heating processes. Eulerian drift work and wave-induced pressure gradient work dominate the energy balance, but they nearly cancel at most altitudes, leaving their difference, together with viscous dissipation and sensible heat flux divergence to heat the atmosphere. Acoustic waves are very different from gravity waves which cool the upper atmosphere through the effect of sensible heat flux ...

A Full-Wave Investigation Of The Use Of A ‘‘Cancellation Factor’’ In Gravity Wave–Oh Airglow Interaction Studies, Michael P. Hickey Ph.D., Yonghui Yu

#### A Full-Wave Investigation Of The Use Of A ‘‘Cancellation Factor’’ In Gravity Wave–Oh Airglow Interaction Studies, Michael P. Hickey Ph.D., Yonghui Yu

*Publications*

Atmospheric gravity waves (GWs) perturb minor species involved in the chemical reactions of airglow emissions in the upper mesosphere and lower thermosphere. In order to determine gravity wave fluxes and the forcing effects of gravity waves on the mean state (which are proportional to the square of the wave amplitude), it is essential that the amplitude of airglow brightness fluctuation be related to the amplitude of major gas density fluctuation in a deterministic way. This has been achieved through detailed modeling combining gravity wave dynamics described using a full-wave model with the chemistry relevant to the airglow emission of interest ...