Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Quantifying Gravity Wave Momentum Fluxes With Mesosphere Temperature Mappers And Correlative Instrumentation, David C. Fritts, Pierre-Dominique Pautet, Katrina Bossert, Michael J. Taylor, Bifford P. Williams, Hiroyuki Iimura, Tao Yuan, Nicholas J. Mitchell, Gunter Stober Dec 2016

Quantifying Gravity Wave Momentum Fluxes With Mesosphere Temperature Mappers And Correlative Instrumentation, David C. Fritts, Pierre-Dominique Pautet, Katrina Bossert, Michael J. Taylor, Bifford P. Williams, Hiroyuki Iimura, Tao Yuan, Nicholas J. Mitchell, Gunter Stober

Publications

An Advanced Mesosphere Temperature Mapper and other instruments at the Arctic Lidar Observatory for Middle Atmosphere Research in Norway (69.3°N) and at Logan and Bear Lake Observatory in Utah (42°N) are used to demonstrate a new method for quantifying gravity wave (GW) pseudo-momentum fluxes accompanying spatially and temporally localized GW packets. The method improves on previous airglow techniques by employing direct characterization of the GW temperature perturbations averaged over the OH airglow layer and correlative wind and temperature measurements to define the intrinsic GW properties with high confidence. These methods are applied to two events, each of which involves superpositions …


Dynamics Of Orographic Gravity Waves Observed In The Mesosphere Over Auckland Islands During The Deep Propagating Gravity Wave Experiment (Deepwave), Stephen D. Eckermann, Dave Broutman, Jun Ma, James D. Doyle, Pierre-Dominique Pautet, Michael J. Taylor, Katrina Bossert, Bifford P. Williams, David C. Fritts, Ronald B. Smith Sep 2016

Dynamics Of Orographic Gravity Waves Observed In The Mesosphere Over Auckland Islands During The Deep Propagating Gravity Wave Experiment (Deepwave), Stephen D. Eckermann, Dave Broutman, Jun Ma, James D. Doyle, Pierre-Dominique Pautet, Michael J. Taylor, Katrina Bossert, Bifford P. Williams, David C. Fritts, Ronald B. Smith

Publications

On 14 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), aircraft remote sensing instruments detected large-amplitude gravity wave oscillations within mesospheric airglow and sodium layers at altitudes z ~ 78–83 km downstream of the Auckland Islands, located ~1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event. At 0700 UTC when the first observations were made, surface flow across the islands’ terrain generated linear three-dimensional wave fields that propagated rapidly to z ~ 78 km, where intense breaking occurred in a narrow …


Systems Modeling To Improve The Hydro-Ecological Performance Of Diked Wetlands, Omar Alminagorta, David E. Rosenberg, Karin M. Kettenring Sep 2016

Systems Modeling To Improve The Hydro-Ecological Performance Of Diked Wetlands, Omar Alminagorta, David E. Rosenberg, Karin M. Kettenring

Publications

Water scarcity and invasive vegetation threaten arid-region wetlands and wetland managers seek ways to enhance wetland ecosystem services with limited water, labor, and financial resources. While prior systems modeling efforts have focused on water management to improve flow-based ecosystem and habitat objectives, here we consider water allocation and invasive vegetation management that jointly target the concurrent hydrologic and vegetation habitat needs of priority wetland bird species. We formulate a composite weighted usable area for wetlands (WU) objective function that represents the wetland surface area that provides suitable water level and vegetation cover conditions for priority bird species. Maximizing …


The Deep Propagating Gravity Wave Experiment (Deepwave): An Airborne And Ground-Based Exploration Of Gravity Wave Propagation And Effects From Their Sources Throughout The Lower And Middle Atmosphere, David C. Fritts, Ronald B. Smith, Michael J. Taylor, James D. Doyle, Stephen D. Eckermann, Andreas Dörnbrack, Markus Rapp, Bifford P. Williams, Pierre-Dominique Pautet, Katrina Bossert, Neal R. Criddle, Carolyn A. Reynolds, P. Alex Reineke, Michael Uddstrom, Michael J. Revell, Richard Turner, Bernd Kaifler, Johannes S. Wagner, Tyler Mixa, Christopher G. Kruse, Alison D. Nugent, Campbell D. Watson, Sonja Gisinger, Steven M. Smith, James J. Moore, William O. Brown, Julie A. Haggerty, Alison Rockwell, Gregory J. Stossmeister, Et Al. Et Al. Apr 2016

The Deep Propagating Gravity Wave Experiment (Deepwave): An Airborne And Ground-Based Exploration Of Gravity Wave Propagation And Effects From Their Sources Throughout The Lower And Middle Atmosphere, David C. Fritts, Ronald B. Smith, Michael J. Taylor, James D. Doyle, Stephen D. Eckermann, Andreas Dörnbrack, Markus Rapp, Bifford P. Williams, Pierre-Dominique Pautet, Katrina Bossert, Neal R. Criddle, Carolyn A. Reynolds, P. Alex Reineke, Michael Uddstrom, Michael J. Revell, Richard Turner, Bernd Kaifler, Johannes S. Wagner, Tyler Mixa, Christopher G. Kruse, Alison D. Nugent, Campbell D. Watson, Sonja Gisinger, Steven M. Smith, James J. Moore, William O. Brown, Julie A. Haggerty, Alison Rockwell, Gregory J. Stossmeister, Et Al. Et Al.

Publications

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and …


Evidence Of Dispersion And Refraction Of A Spectrally Broad Gravity Wave Packet In The Mesopause Region Observed By The Na Lidar And Mesospheric Temperature Mapper Above Logan, Utah, Tao Yuan, Christopher J. Heale, Jonathan B. Snively, Xuguang Cai, Pierre-Dominique Pautet, C. Fish, Yucheng Zhao, Michael J. Taylor, William R. Pendleton Jr., V. Wickwar, Nicholas John Mitchell Jan 2016

Evidence Of Dispersion And Refraction Of A Spectrally Broad Gravity Wave Packet In The Mesopause Region Observed By The Na Lidar And Mesospheric Temperature Mapper Above Logan, Utah, Tao Yuan, Christopher J. Heale, Jonathan B. Snively, Xuguang Cai, Pierre-Dominique Pautet, C. Fish, Yucheng Zhao, Michael J. Taylor, William R. Pendleton Jr., V. Wickwar, Nicholas John Mitchell

Publications

Gravity wave packets excited by a source of finite duration and size possess a broad frequency and wave number spectrum and thus span a range of temporal and spatial scales. Observing at a single location relatively close to the source, the wave components with higher frequency and larger vertical wavelength dominate at earlier times and at higher altitudes, while the lower frequency components, with shorter vertical wavelength, dominate during the latter part of the propagation. Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper at Bear Lake Observatory (41.9°N, 111.4°W), we investigate a …


How Uncertainty In The Neutral Wind Limits The Accuracy Of Ionospheric Modeling And Forecasting, Michael David, Jan J. Sojka, Robert W. Schunk Jan 2016

How Uncertainty In The Neutral Wind Limits The Accuracy Of Ionospheric Modeling And Forecasting, Michael David, Jan J. Sojka, Robert W. Schunk

Publications

One of the most important input fields for an ionospheric model is the horizontal neutral wind. The primary mechanism by which the neutral wind affects ionospheric densities is the inducement of an upward or downward ion drift along the magnetic field lines; this affects the rate at which ions are lost through recombination. The magnitude of this effect depends upon the dip angle of the magnetic field; for this reason, the impact of the neutral wind is somewhat less in polar regions than at mid-latitudes. It is unfortunate that observations of the neutral wind are relatively scarce, as compared for …