Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Gravitons To Photons--Attenuation Of Gravitational Waves, Preston Jones, Douglas Singleton Nov 2015

Gravitons To Photons--Attenuation Of Gravitational Waves, Preston Jones, Douglas Singleton

Publications

In this essay, we examine the response of an Unruh–DeWitt (UD) detector (a quantum two-level system) to a gravitational wave background. The spectrum of the UD detector is of the same form as some scattering processes or three body decays such as muon-electron scattering or muon decay. Based on this similarity, we propose that the UD detector response implies a “decay” or attenuation of gravitons, G, into photons, γ, via G+G→γ+γ or G→γ+γ+G. Over large distances such a decay/attenuation may have consequences in regard to the detection of gravitational waves.


Testing Lorentz Symmetry With Planetary Orbital Dynamics, A. Hees, Q. G. Bailey, C. Le Poncin-Lafitte, A. Bourgoin, A. Rivoldini, B. Lamine, F. Meynadier, C. Guerlin, P. Wolf Sep 2015

Testing Lorentz Symmetry With Planetary Orbital Dynamics, A. Hees, Q. G. Bailey, C. Le Poncin-Lafitte, A. Bourgoin, A. Rivoldini, B. Lamine, F. Meynadier, C. Guerlin, P. Wolf

Publications

Planetary ephemerides are a very powerful tool to constrain deviations from the theory of general relativity (GR) using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and …


What Do We Know About Lorentz Symmetry?, Q. G. Bailey Mar 2015

What Do We Know About Lorentz Symmetry?, Q. G. Bailey

Publications

Precision tests of Lorentz symmetry have become increasingly of interest to the broader gravitational and high-energy physics communities. In this talk, recent work on violations of local Lorentz invariance in gravity is discussed, including recent analysis constraining Lorentz violation in a variety of gravitational tests. The arena of short-range tests of gravity is highlighted, demonstrating that such tests are sensitive to a broad class of unexplored signals that depend on sidereal time and the geometry of the experiment.


Short-Range Gravity And Lorentz Violation, Quentin G. Bailey, V. Alan Kostelecký, Rui Xu Jan 2015

Short-Range Gravity And Lorentz Violation, Quentin G. Bailey, V. Alan Kostelecký, Rui Xu

Publications

Comparatively few searches have been performed for violations of local Lorentz invariance in the pure-gravity sector. We show that tests of short-range gravity are sensitive to a broad class of unconstrained and novel signals that depend on the experimental geometry and on sidereal time.


Quantum Tests Of The Einstein Equivalence Principle With The Ste-Quest Space Mission, Brett Altschul, Quentin G. Bailey, Luc Blanchet, Kai Bongs, Philippe Bouyer, Luigi Cacciapuoti, Et Al. Jan 2015

Quantum Tests Of The Einstein Equivalence Principle With The Ste-Quest Space Mission, Brett Altschul, Quentin G. Bailey, Luc Blanchet, Kai Bongs, Philippe Bouyer, Luigi Cacciapuoti, Et Al.

Publications

We present in detail the scientific objectives in fundamental physics of the Space–Time Explorer and QUantum Equivalence Space Test (STE–QUEST) space mission. STE–QUEST was pre-selected by the European Space Agency together with four other missions for the cosmic vision M3 launch opportunity planned around 2024. It carries out tests of different aspects of the Einstein Equivalence Principle using atomic clocks, matter wave interferometry and long distance time/frequency links, providing fascinating science at the interface between quantum mechanics and gravitation that cannot be achieved, at that level of precision, in ground experiments. We especially emphasize the specific strong interest of performing …