Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Dynamics Of Density Cavities Generated By Frictional Heating: Formation, Distortion, And Instability, M. D. Zettergren, J. L. Semeter, H. Dahlgren Dec 2015

Dynamics Of Density Cavities Generated By Frictional Heating: Formation, Distortion, And Instability, M. D. Zettergren, J. L. Semeter, H. Dahlgren

Publications

A simulation study of the generation and evolution of mesoscale density cavities in the polar ionosphere is conducted using a time-dependent, nonlinear, quasi-electrostatic model. The model demonstrates that density cavities, generated by frictional heating, can form in as little as 90 s due to strong electric fields of ∼120 mV/m, which are sometimes observed near auroral zone and polar cap arcs. Asymmetric density cavity features and strong plasma density gradients perpendicular to the geomagnetic field are naturally generated as a consequence of the strong convection and finite extent of the auroral feature. The walls of the auroral density cavities are …


A Coordinated Study Of 1-H Mesoscale Gravity Waves Propagating From Logan To Boulder With Crrl Na Doppler Lidars And Temperature Mapper, Xian Liu, Cao Chen, Wentao Huang, John A. Smith, Xinzhao Chu, Tao Yuan, Pierre-Dominique Pautet, Michael J. Taylor, Jie Gong, Chihoko Y. Cullens Oct 2015

A Coordinated Study Of 1-H Mesoscale Gravity Waves Propagating From Logan To Boulder With Crrl Na Doppler Lidars And Temperature Mapper, Xian Liu, Cao Chen, Wentao Huang, John A. Smith, Xinzhao Chu, Tao Yuan, Pierre-Dominique Pautet, Michael J. Taylor, Jie Gong, Chihoko Y. Cullens

Publications

We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82–107 km. …


Momentum Flux Estimates Accompanying Multi-Scale Gravity Waves Over Mt. Cook, New Zealand On 13 July 2014 During The Deepwave Campaign, Katrina Bossert, David C. Fritts, Pierre-Dominique Pautet, Bifford P. Williams, Michael J. Taylor, Bernd Kaifler, Andrea Dornbrack, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, Andrew D. Mackinnon Sep 2015

Momentum Flux Estimates Accompanying Multi-Scale Gravity Waves Over Mt. Cook, New Zealand On 13 July 2014 During The Deepwave Campaign, Katrina Bossert, David C. Fritts, Pierre-Dominique Pautet, Bifford P. Williams, Michael J. Taylor, Bernd Kaifler, Andrea Dornbrack, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, Andrew D. Mackinnon

Publications

Observations performed with a Rayleigh lidar and an Advanced Mesosphere Temperature Mapper aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V research aircraft on 13 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) measurement program revealed a large-amplitude, multiscale gravity wave (GW) environment extending from ~20 to 90 km on flight tracks over Mount Cook, New Zealand. Data from four successive flight tracks are employed here to assess the characteristics and variability of the larger- and smaller-scale GWs, including their spatial scales, amplitudes, phase speeds, and momentum fluxes. On each flight, a large-scale mountain wave (MW) …


Ionospheric Response To Infrasonic-Acoustic Waves Generated By Natural Hazard Events, M. D. Zettergren, J. B. Snively Sep 2015

Ionospheric Response To Infrasonic-Acoustic Waves Generated By Natural Hazard Events, M. D. Zettergren, J. B. Snively

Publications

"Recent measurements of GPS-derived total electron content (TEC) reveal acoustic wave periods of ∼1–4 min in the F region ionosphere following natural hazard events, such as earthquakes, severe weather, and volcanoes. Here we simulate the ionospheric responses to infrasonic-acoustic waves, generated by vertical accelerations at the Earth’s surface or within the lower atmosphere, using a compressible atmospheric dynamics model to perturb a multifluid ionospheric model. Response dependencies on wave source geometry and spectrum are investigated at middle, low, and equatorial latitudes. Results suggest constraints on wave amplitudes that are consistent with observations and that provide insight on the geographical variability …


Self-Accleration And Instability Of Gravity Wave Packets: 1. Effects Of Temporal Localization, David C. Fritts, Brian Laughman, Thomas S. Lund, Jonathan B. Snively Sep 2015

Self-Accleration And Instability Of Gravity Wave Packets: 1. Effects Of Temporal Localization, David C. Fritts, Brian Laughman, Thomas S. Lund, Jonathan B. Snively

Publications

"An anelastic numerical model is used to explore the dynamics accompanying the attainment of large amplitudes by gravity waves (GWs) that are localized in altitude and time. GW momentum transport induces mean flow variations accompanying a GW packet that grows exponentially with altitude, is localized in altitude, and induces significant GW phase speed, and phase, variations across the GW packet. These variations arise because the GW occupies the region undergoing accelerations, with the induced phase speed variations referred to as “self-acceleration.” Results presented here reveal that self-acceleration of a GW packet localized in time and altitude ultimately leads to stalling …


The Life Cycle Of Instability Features Measured From The Andes Lidar Observatory Over Cerro Pachon On 24 March 2012, J. H. Hecht, K. Wan, Lynette Gelinas, David Fritts, R. L. Walterscheid, R. J. Rudy, Alan Liu, Steven J. Franke, Fabio Vargas, P. -D. Pautet, Michael Taylor, Gary Swenson, Jul 2015

The Life Cycle Of Instability Features Measured From The Andes Lidar Observatory Over Cerro Pachon On 24 March 2012, J. H. Hecht, K. Wan, Lynette Gelinas, David Fritts, R. L. Walterscheid, R. J. Rudy, Alan Liu, Steven J. Franke, Fabio Vargas, P. -D. Pautet, Michael Taylor, Gary Swenson,

Publications

The Aerospace Corporation's Nightglow Imager (ANI) observes nighttime OH emission (near 1.6 µm) every 2 s over an approximate 73¬∞ field of view. ANI had previously been used to study instability features seen over Maui. Here we describe observations of instabilities seen from 5 to 8 UT on 24 March 2012 over Cerro Pachon, Chile, and compare them with previous results from Maui, with theory, and with Direct Numerical Simulations (DNS). The atmosphere had reduced stability because of the large negative temperature gradients measured by a Na lidar. Thus, regions of dynamical and convective instabilities are expected to form, depending …


Gravity Wave Propagation Through A Vertically And Horizontally Inhomogeneous Background Wind, C. J. Heale, J. B. Snively Jun 2015

Gravity Wave Propagation Through A Vertically And Horizontally Inhomogeneous Background Wind, C. J. Heale, J. B. Snively

Publications

"A combination of ray theory and 2-D time-dependent simulations is used to investigate the linear effects of a time-dependent, vertically, and horizontally inhomogeneous background horizontal wind field on the propagation, refraction, and reflection of small-scale gravity wave packets. Interactions between propagating waves of different scales are likely to be numerous and important. We find that a static medium-scale wave wind field of sufficient amplitude can channel and/or critical-level filter a small-scale wave or cause significant reflection, depending upon both waves' parameters. However, the inclusion of a time-dependent phase progression of the medium-scale wave can reduce energy loss through critical-level filtering …


Hurricanes And Climate The U.S. Clivar Working Group On Hurricanes, Kevin J.E. Walsh, Suzana J. Camargo, Gabriel A. Vecchi, Anne Sophie Daloz, James Elsner, Kerry Emanuel, Michael Horn, Young-Kwon Lim, Malcom Roberts, Christina Patricola, Enrico Scoccimarro, Adam H. Sobel, Sarah Strazzo, Gabrielle Villarini, Michael Wehner, Ming Zhao, James P. Kossin, Tim Larow, Kazuyoshi Oouchi, Sigfried Schubert, Hui Wang, Julio Bacmeister, Ping Chang, Fabrice Chauvin, Christiane Jablonowski, Arun Kumar, Hiroyuki Murakami, Tomoaki Ose, Kevin A. Reed, Ramalingam Saravanan, Yohei Yamada, Colin M. Zarzycki, Pier Luigi Vidale, Jefferey A. Jonas, Naomi Henderson Jun 2015

Hurricanes And Climate The U.S. Clivar Working Group On Hurricanes, Kevin J.E. Walsh, Suzana J. Camargo, Gabriel A. Vecchi, Anne Sophie Daloz, James Elsner, Kerry Emanuel, Michael Horn, Young-Kwon Lim, Malcom Roberts, Christina Patricola, Enrico Scoccimarro, Adam H. Sobel, Sarah Strazzo, Gabrielle Villarini, Michael Wehner, Ming Zhao, James P. Kossin, Tim Larow, Kazuyoshi Oouchi, Sigfried Schubert, Hui Wang, Julio Bacmeister, Ping Chang, Fabrice Chauvin, Christiane Jablonowski, Arun Kumar, Hiroyuki Murakami, Tomoaki Ose, Kevin A. Reed, Ramalingam Saravanan, Yohei Yamada, Colin M. Zarzycki, Pier Luigi Vidale, Jefferey A. Jonas, Naomi Henderson

Publications

While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results from …


Lower Thermospheric Response To Atmospheric Gravity Waves Induced By The 2011 Tohoku Tsunami, Yonghui Yu, Zhiyu Yan, Michael P. Hickey Ph.D. May 2015

Lower Thermospheric Response To Atmospheric Gravity Waves Induced By The 2011 Tohoku Tsunami, Yonghui Yu, Zhiyu Yan, Michael P. Hickey Ph.D.

Publications

Previous GPS observations have revealed that while ionospheric TIDs were seen propagating in all directions away from the 2011 Tohoku earthquake epicenter, the total electron content (TEC) fluctuations associated with the subsequent tsunami were largest for waves propagating toward the northwest of the epicenter. Ionospheric motions observed approximately 10min after the earthquake were attributed to fast acoustic waves directly produced by the earthquake. Waves that first appeared about 40 min after the tsunami onset in TEC measurements were attributed to atmospheric gravity waves. In this paper, we conjecture that the remarkably different responses observed for the eastward and westward propagating …


A Full-Wave Model For A Binary Gas Thermosphere: Effects Of Thermal Conductivity And Viscosity, Michael P. Hickey Ph.D., R. L. Walterscheid, G. Schubert Apr 2015

A Full-Wave Model For A Binary Gas Thermosphere: Effects Of Thermal Conductivity And Viscosity, Michael P. Hickey Ph.D., R. L. Walterscheid, G. Schubert

Publications

The thermosphere is diffusively separated and behaves as a multiconstituent gas wherein individual species in static equilibrium are each stratified according to their individual scale heights. Gravity waves propagating in the thermosphere cause individual gases to oscillate with different amplitudes and phases. We use a two-gas (N2 and O) full-wave model to examine the roles of thermal conductivity, viscosity, and mutual diffusion on the wave-induced characteristics of both gases. In the lower thermosphere, where the gases are relatively tightly coupled, the major gas (N2) controls the minor gas (O) response. At higher altitudes, the gases become thermally and inertially decoupled, …


Recent Progress In Mesospheric Gravity Wave Studies Using Nigthglow Imaging System, Michael J. Taylor, William R. Pendleton Jr., Pierre-Dominique Pautet, Yucheng Zhao, Chris Olsen, Hema Karnam Surendra Babu, Amauri F. Medeiros, Hisao Takahashi Feb 2015

Recent Progress In Mesospheric Gravity Wave Studies Using Nigthglow Imaging System, Michael J. Taylor, William R. Pendleton Jr., Pierre-Dominique Pautet, Yucheng Zhao, Chris Olsen, Hema Karnam Surendra Babu, Amauri F. Medeiros, Hisao Takahashi

Publications

A variety of optical remote sensing techniques have now revealed a rich spectrum of wave activity in the upper atmosphere. Many of these perturbations, with periodicities ranging from ~ 5 min to many hours and horizontal scales of a few tens of km to several thousands km, are due to freely propagating atmospheric gravity waves and forced tidal oscillations. Passive optical observations of the spatial and temporal characteristics of these waves in the mesosphere and lower thermosphere (MLT) region ( ~ 80-100 km) are facilitated by several naturally occurring, vertically distinct nightglow layers. This paper describes the use of state-of-the-art …


Coordinated Investigation Of Mid-Latitude Upper Mesospheric Temperature Inversion Layers And The Associated Gravity Wave Forcing By Na Lidar And Advanced Mesospheric Temperature Mapper At Logan, Utah (42°N), Tao Yuan, Pierre-Dominique Pautet, Yucheng Zhao, Xuguang Cai, Neal R. Criddle, Michael J. Taylor, William R. Pendleton Jr. Feb 2015

Coordinated Investigation Of Mid-Latitude Upper Mesospheric Temperature Inversion Layers And The Associated Gravity Wave Forcing By Na Lidar And Advanced Mesospheric Temperature Mapper At Logan, Utah (42°N), Tao Yuan, Pierre-Dominique Pautet, Yucheng Zhao, Xuguang Cai, Neal R. Criddle, Michael J. Taylor, William R. Pendleton Jr.

Publications

Mesospheric inversion layers (MIL) are well studied in the literature but their relationship to the dynamic feature associated with the breaking of atmospheric waves in the mesosphere/lower thermosphere (MLT) region are not well understood. Two strong MIL events (ΔT ~30 K) were observed above 90 km during a 6 day full diurnal cycle Na lidar campaign conducted from 6 August to 13 August Logan, Utah (42°N, 112°W). Colocated Advanced Mesospheric Temperature Mapper observations provided key information on concurrent gravity wave (GW) events and their characteristics during the nighttime observations. The study found both MILs were well correlated with the development …


An Unusual Aerial Photograph Of An Eddy Circulation In Marine Stratocumulus Clouds (Picture Of The Month), Bradley M. Muller, Christopher G. Herbster, Frederick R. Mosher Feb 2015

An Unusual Aerial Photograph Of An Eddy Circulation In Marine Stratocumulus Clouds (Picture Of The Month), Bradley M. Muller, Christopher G. Herbster, Frederick R. Mosher

Publications

An aerial photograph of a cyclonic, von Kármán–like vortex in the marine stratocumulus clouds off the California coast, taken by a commercial pilot near Grover Beach, is presented. It is believed that this is the first photograph of such an eddy, taken from an airplane, to appear in publication.

The eddy occurred with a strong inversion above a shallow marine boundary layer, in the lee of high, inversion-penetrating terrain. Tower and surface wind measurements plotted on satellite imagery demonstrate that the Grover Beach eddy was not just a cloud-level feature, but extended through the marine atmospheric boundary layer (MABL) to …


Observational Evidence Of Quasi-27-Day Oscillation Propagating From The Lower Atmosphere To The Mesosphere Over 20° N, K.M. Huang, Alan Liu, S.D. Zhang, F. Yi, C.M. Huang Jan 2015

Observational Evidence Of Quasi-27-Day Oscillation Propagating From The Lower Atmosphere To The Mesosphere Over 20° N, K.M. Huang, Alan Liu, S.D. Zhang, F. Yi, C.M. Huang

Publications

By using meteor radar, radiosonde and satellite observations over 20° N and NCEP/NCAR reanalysis data during 81 days from 22 December 2004 to 12 March 2005, a quasi-27-day oscillation propagating from the troposphere to the mesosphere is reported. A pronounced 27-day periodicity is observed in the raw zonal wind from meteor radar. Spectral analysis shows that the oscillation also occurs in the meridional wind and temperature and propagates westward with wavenumber s = 1; thus the oscillation is of Rossby wave type. The oscillation attains a large amplitude of about 12 m s−1 in the eastward wind shear region of …


A Swirl In The Clouds Near Santa Cruz Island (Images Of Note), Bradley M. Muller, Christopher G. Herbster Jan 2015

A Swirl In The Clouds Near Santa Cruz Island (Images Of Note), Bradley M. Muller, Christopher G. Herbster

Publications

The authors discuss a rare photograph of an atmospheric eddy produced by marine boundary layer flow past terrain.