Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Protein Nano-Object Integrator (Pronoi) For Generating Atomic Style Objects For Molecular Modeling, Nicholas Smith, Brandon Campbell, Lin Li, Chuan Li, Emil Alexov Dec 2012

Protein Nano-Object Integrator (Pronoi) For Generating Atomic Style Objects For Molecular Modeling, Nicholas Smith, Brandon Campbell, Lin Li, Chuan Li, Emil Alexov

Publications

Background

With the progress of nanotechnology, one frequently has to model biological macromolecules simultaneously with nano-objects. However, the atomic structures of the nano objects are typically not available or they are solid state entities. Because of that, the researchers have to investigate such nano systems by generating models of the nano objects in a manner that the existing software be able to carry the simulations. In addition, it should allow generating composite objects with complex shape by combining basic geometrical figures and embedding biological macromolecules within the system.

Results

Here we report the Protein Nano-Object Integrator (ProNOI) which allows for …


Highly Efficient And Exact Method For Parallelization Of Grid-Based Algorithms And Its Implementation In Delphi, Chuan Li, Lin Li, Jie Zhang, Emil Alexov Sep 2012

Highly Efficient And Exact Method For Parallelization Of Grid-Based Algorithms And Its Implementation In Delphi, Chuan Li, Lin Li, Jie Zhang, Emil Alexov

Publications

The Gauss–Seidel (GS) method is a standard iterative numerical method widely used to solve a system of equations and, in general, is more efficient comparing to other iterative methods, such as the Jacobi method. However, standard implementation of the GS method restricts its utilization in parallel computing due to its requirement of using updated neighboring values (i.e., in current iteration) as soon as they are available. Here, we report an efficient and exact (not requiring assumptions) method to parallelize iterations and to reduce the computational time as a linear/nearly linear function of the number of processes or computing units. In …


Predicting Nonspecific Ion Binding Using Delphi, Marharyta Petukh, Maxim Zhenirovskyy, Chuan Li, Lin Li, Lin Wang, Emil Alexov Jun 2012

Predicting Nonspecific Ion Binding Using Delphi, Marharyta Petukh, Maxim Zhenirovskyy, Chuan Li, Lin Li, Lin Wang, Emil Alexov

Publications

Ions are an important component of the cell and affect the corresponding biological macromolecules either via direct binding or as a screening ion cloud. Although some ion binding is highly specific and frequently associated with the function of the macromolecule, other ions bind to the protein surface nonspecifically, presumably because the electrostatic attraction is strong enough to immobilize them. Here, we test such a scenario and demonstrate that experimentally identified surface-bound ions are located at a potential that facilitates binding, which indicates that the major driving force is the electrostatics. Without taking into consideration geometrical factors and structural fluctuations, we …


Delphi: A Comprehensive Suite For Delphi Software And Associated Resources, Lin Li, Chuan Li, Subhra Sarkar, Jie Zhang, Shawn Witham, Zhe Zhang, Lin Wang, Nicholas Smith, Marharyta Petukh, Emil Alexov May 2012

Delphi: A Comprehensive Suite For Delphi Software And Associated Resources, Lin Li, Chuan Li, Subhra Sarkar, Jie Zhang, Shawn Witham, Zhe Zhang, Lin Wang, Nicholas Smith, Marharyta Petukh, Emil Alexov

Publications

Background

Accurate modeling of electrostatic potential and corresponding energies becomes increasingly important for understanding properties of biological macromolecules and their complexes. However, this is not an easy task due to the irregular shape of biological entities and the presence of water and mobile ions.

Results

Here we report a comprehensive suite for the well-known Poisson-Boltzmann solver, DelPhi, enriched with additional features to facilitate DelPhi usage. The suite allows for easy download of both DelPhi executable files and source code along with a makefile for local installations. The users can obtain the DelPhi manual and parameter files required for the corresponding …


Analyzing Effects Of Naturally Occurring Missense Mutations, Zhe Zhang, Maria A. Miteva, Lin Wang, Emil Alexov Feb 2012

Analyzing Effects Of Naturally Occurring Missense Mutations, Zhe Zhang, Maria A. Miteva, Lin Wang, Emil Alexov

Publications

Single-point mutation in genome, for example, single-nucleotide polymorphism (SNP) or rare genetic mutation, is the change of a single nucleotide for another in the genome sequence. Some of them will produce an amino acid substitution in the corresponding protein sequence (missense mutations); others will not. This paper focuses on genetic mutations resulting in a change in the amino acid sequence of the corresponding protein and how to assess their effects on protein wild-type characteristics. The existing methods and approaches for predicting the effects of mutation on protein stability, structure, and dynamics are outlined and discussed with respect to their underlying …