Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

A Detailed Model Atmosphere Analysis Of Cool White Dwarfs In The Sloan Digital Sky Survey, Mukremin Kilic, Ted Von Hippel, Et Al. Sep 2010

A Detailed Model Atmosphere Analysis Of Cool White Dwarfs In The Sloan Digital Sky Survey, Mukremin Kilic, Ted Von Hippel, Et Al.

Publications

We present optical spectroscopy and near-infrared photometry of 126 cool white dwarfs (WDs) in the Sloan Digital Sky Survey (SDSS). Our sample includes high proper motion targets selected using the SDSS and USNO-B astrometry and a dozen previously known ultracool WD candidates. Our optical spectroscopic observations demonstrate that a clean selection of large samples of cool WDs in the SDSS (and the SkyMapper, Pan-STARRS, and the Large Synoptic Survey Telescope data sets) is possible using a reduced proper motion diagram and a tangential velocity cut-off (depending on the proper motion accuracy) of 30 km s–1. Our near-infrared observations reveal eight …


Visitors From The Halo: 11 Gyr Old White Dwarfs In The Solar Neighborhood, Mukremin Kilic, Ted Von Hippel, Et Al. May 2010

Visitors From The Halo: 11 Gyr Old White Dwarfs In The Solar Neighborhood, Mukremin Kilic, Ted Von Hippel, Et Al.

Publications

We report the discovery of three nearby old halo white dwarf (WD) candidates in the Sloan Digital Sky Survey (SDSS), including two stars in a common proper motion binary system. These candidates are selected from our 2800deg2 proper motion survey on the Bok and U.S. Naval Observatory Flagstaff Station 1.3 m telescopes, and they display proper motions of 0˝.4-0˝.5 yr¯1. Follow-up MMT spectroscopy and near-infrared photometry demonstrate that all three objects are hydrogen-dominated atmosphere WDs with T eff ≈ 3700-4100 K. For average mass WDs, these temperature estimates correspond to cooling ages of 9-10 Gyr, distances of 70-80 pc, and …


Fe I And Fe Ii Abundances Of Solar-Type Dwarfs In The Pleiades Open Cluster, Simon C. Schuler, Adele L. Plunkett, Jeremy R. King, Marc H. Pinsonneault May 2010

Fe I And Fe Ii Abundances Of Solar-Type Dwarfs In The Pleiades Open Cluster, Simon C. Schuler, Adele L. Plunkett, Jeremy R. King, Marc H. Pinsonneault

Publications

We have derived Fe abundances of 16 solar-type Pleiades dwarfs by means of an equivalent width analysis of Fe I and Fe II lines in high-resolution spectra obtained with the Hobby - Eberly Telescope and High Resolution Spectrograph. Abundances derived from Fe II lines are larger than those derived from Fe I lines (herein referred to as over-ionization) for stars with Teff < 5400 K, and the dis-crepancy (∆Fe = [Fe II/H] - [Fe I/H]) increases dramatically with decreasing Teff, reaching over 0.8 dex for the coolest stars of our sample. The Pleiades joins the open clusters M34, the Hyades, IC2602, and IC2391, and the Ursa Major moving group, demonstrating ostensible over-ionization trends. The Pleiades ∆Fe abun-dances are correlated with Ca II infrared triplet and Hα chromospheric emission indicators and relative differences therein. Oxygen abundances of our Pleiades sample derived from the high-excitation O I triplet have been previously shown to increase with decreasing Teff, and a comparison with the ∆Fe abundances sug-gests that the over-excitation (larger abundances derived from high excitation lines relative to low excitation lines) and over-ionization effects that have been observed in cool open cluster and disk field main sequence (MS) dwarfs share a common origin. Curiously, a correlation between the Pleiades O I abundances and chromospheric emission indicators does not exist. Star-to-star Fe I abun-dances have low internal scatter (< 0.11 dex), but the abundances of stars with Teff< 5400 K are systematically higher compared to the warmer stars. The cool star [Fe I/H] abundances cannot be connected directly to over-excitation effects, but similarities with the ∆Fe and O I triplet trends suggest the abundances are dubious. Using the [Fe I/H] abundances of five stars with Teff > 5400 K, we derive a mean Pleiades cluster metallicity of [Fe/H] = +0.01 ± 0.02.