Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Publications

Physics

PH-optimum

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

In Silico Modeling Of Ph-Optimum Of Protein-Protein Binding, Rooplekha C. Mitra, Zhe Zhang, Emil Alexov Dec 2010

In Silico Modeling Of Ph-Optimum Of Protein-Protein Binding, Rooplekha C. Mitra, Zhe Zhang, Emil Alexov

Publications

Protein-protein association is a pH-dependent process and thus the binding affinity depends on the local pH. In vivo the association occurs in a particular cellular compartment, where the individual monomers are supposed to meet and form a complex. Since the monomers and the complex exist in the same micro environment, it is plausible that they coevolved toward its properties, in particular, toward the characteristic subcellular pH. Here we show that the pH at which the monomers are most stable (pH-optimum) or the pH at which stability is almost pH-independent (pH-flat) of monomers are correlated with the pH-optimum of maximal affinity …


On The Ph-Optimum Of Activity And Stability Of Proteins, Kemper Tally, Emil Alexov Jun 2010

On The Ph-Optimum Of Activity And Stability Of Proteins, Kemper Tally, Emil Alexov

Publications

Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that …