Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Publications

Physics

DelPhi

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Continuous Development Of Schemes For Parallel Computing Of The Electrostatics In Biological Systems: Implementation In Delphi, Chuan Li, Marharyta Petukh, Lin Li, Emil Alexov Jun 2013

Continuous Development Of Schemes For Parallel Computing Of The Electrostatics In Biological Systems: Implementation In Delphi, Chuan Li, Marharyta Petukh, Lin Li, Emil Alexov

Publications

Due to the enormous importance of electrostatics in molecular biology, calculating the electrostatic potential and corresponding energies has become a standard computational approach for the study of biomolecules and nano-objects immersed in water and salt phase or other media. However, the electrostatics of large macromolecules and macromolecular complexes, including nano-objects, may not be obtainable via explicit methods and even the standard continuum electrostatics methods may not be applicable due to high computational time and memory requirements. Here, we report further development of the parallelization scheme reported in our previous work (J Comput Chem. 2012 Sep 15; 33(24):1960–6.) to include parallelization …


Delphi Web Server: A Comprehensive Online Suite For Electrostatic Calculations Of Biological Macromolecules And Their Complexes., Subhra Sarkar, Shawn Witham, Jie Zhang, Maxim Zhenirovskyy, Walter Rocchia Jan 2013

Delphi Web Server: A Comprehensive Online Suite For Electrostatic Calculations Of Biological Macromolecules And Their Complexes., Subhra Sarkar, Shawn Witham, Jie Zhang, Maxim Zhenirovskyy, Walter Rocchia

Publications

Here we report a web server, the DelPhi web server, which utilizes DelPhi program to calculate electrostatic energies and the corresponding electrostatic potential and ionic distributions, and dielectric map. The server provides extra services to fix structural defects, as missing atoms in the structural file and allows for generation of missing hydrogen atoms. The hydrogen placement and the corresponding DelPhi calculations can be done with user selected force field parameters being either Charmm22, Amber98 or OPLS. Upon completion of the calculations, the user is given option to download fixed and protonated structural file, together with the parameter and Delphi output …


Using Delphi Capabilities To Mimic Protein's Conformational Reorganization With Amino Acid Specific Dielectric Constants, Lin Wang, Zhe Zhang, Walter Rocchia, Emil Alexov Jan 2013

Using Delphi Capabilities To Mimic Protein's Conformational Reorganization With Amino Acid Specific Dielectric Constants, Lin Wang, Zhe Zhang, Walter Rocchia, Emil Alexov

Publications

Many molecular events are associated with small or large conformational changes occurring in the corresponding proteins. Modeling such changes is a challenge and requires significant amount of computing time. From point of view of electrostatics, these changes can be viewed as a reorganization of local charges and dipoles in response to the changes of the electrostatic field, if the cause is insertion or deletion of a charged amino acid. Here we report a large scale investigation of modeling the changes of the folding energy due to single mutations involving charged group. This allows the changes of the folding energy to …


Protein Nano-Object Integrator (Pronoi) For Generating Atomic Style Objects For Molecular Modeling, Nicholas Smith, Brandon Campbell, Lin Li, Chuan Li, Emil Alexov Dec 2012

Protein Nano-Object Integrator (Pronoi) For Generating Atomic Style Objects For Molecular Modeling, Nicholas Smith, Brandon Campbell, Lin Li, Chuan Li, Emil Alexov

Publications

Background

With the progress of nanotechnology, one frequently has to model biological macromolecules simultaneously with nano-objects. However, the atomic structures of the nano objects are typically not available or they are solid state entities. Because of that, the researchers have to investigate such nano systems by generating models of the nano objects in a manner that the existing software be able to carry the simulations. In addition, it should allow generating composite objects with complex shape by combining basic geometrical figures and embedding biological macromolecules within the system.

Results

Here we report the Protein Nano-Object Integrator (ProNOI) which allows for …


Highly Efficient And Exact Method For Parallelization Of Grid-Based Algorithms And Its Implementation In Delphi, Chuan Li, Lin Li, Jie Zhang, Emil Alexov Sep 2012

Highly Efficient And Exact Method For Parallelization Of Grid-Based Algorithms And Its Implementation In Delphi, Chuan Li, Lin Li, Jie Zhang, Emil Alexov

Publications

The Gauss–Seidel (GS) method is a standard iterative numerical method widely used to solve a system of equations and, in general, is more efficient comparing to other iterative methods, such as the Jacobi method. However, standard implementation of the GS method restricts its utilization in parallel computing due to its requirement of using updated neighboring values (i.e., in current iteration) as soon as they are available. Here, we report an efficient and exact (not requiring assumptions) method to parallelize iterations and to reduce the computational time as a linear/nearly linear function of the number of processes or computing units. In …


Delphi: A Comprehensive Suite For Delphi Software And Associated Resources, Lin Li, Chuan Li, Subhra Sarkar, Jie Zhang, Shawn Witham, Zhe Zhang, Lin Wang, Nicholas Smith, Marharyta Petukh, Emil Alexov May 2012

Delphi: A Comprehensive Suite For Delphi Software And Associated Resources, Lin Li, Chuan Li, Subhra Sarkar, Jie Zhang, Shawn Witham, Zhe Zhang, Lin Wang, Nicholas Smith, Marharyta Petukh, Emil Alexov

Publications

Background

Accurate modeling of electrostatic potential and corresponding energies becomes increasingly important for understanding properties of biological macromolecules and their complexes. However, this is not an easy task due to the irregular shape of biological entities and the presence of water and mobile ions.

Results

Here we report a comprehensive suite for the well-known Poisson-Boltzmann solver, DelPhi, enriched with additional features to facilitate DelPhi usage. The suite allows for easy download of both DelPhi executable files and source code along with a makefile for local installations. The users can obtain the DelPhi manual and parameter files required for the corresponding …