Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Publications

Cosmology, Relativity, and Gravity

Lorentz violation

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Relating Noncommutative So(2,3)* Gravity To The Lorentz-Violating Standard-Model Extension, Quentin G. Bailey, Charles D. Lane Oct 2018

Relating Noncommutative So(2,3)* Gravity To The Lorentz-Violating Standard-Model Extension, Quentin G. Bailey, Charles D. Lane

Publications

We consider a model of noncommutative gravity that is based on a spacetime with broken local SO(2,3)* symmetry. We show that the torsion-free version of this model is contained within the framework of the Lorentz-violating Standard-Model Extension (SME). We analyze in detail the relation between the torsion-free, quadratic limits of the broken SO(2,3)* model and the Standard-Model Extension. As part of the analysis, we construct the relevant geometric quantities to quadratic order in the metric perturbation around a flat background.


Constraints On Violations Of Lorentz Symmetry From Gravity Probe B, James M. Overduin, Ryan D. Everett, Quentin G. Bailey Mar 2014

Constraints On Violations Of Lorentz Symmetry From Gravity Probe B, James M. Overduin, Ryan D. Everett, Quentin G. Bailey

Publications

We use the final results from Gravity Probe B to set new upper limits on the gravitational sector of the Standard-Model Extension, including for the first time the coefficient associated with the time-time component of the new field responsible for inducing local Lorentz violation in the theory.


Gravity Couplings In The Standard-Model Extension, Quentin G. Bailey Dec 2010

Gravity Couplings In The Standard-Model Extension, Quentin G. Bailey

Publications

The Standard-Model Extension (SME) is an action-based expansion describing general Lorentz violation for known matter and fields, including gravity. In this talk, I will discuss the Lorentz-violating gravity couplings in the SME. Toy models that match the SME expansion, including vector and two-tensor models, are reviewed. Finally I discuss the status of experiments and observations probing gravity coefficients for Lorentz violation.