Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Publications

Biological and Chemical Physics

PH-dependence

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Role Of Protonation States In Ligand-Receptor Recognition And Binding, Marharyta Petukh, Shannon Stefl, Emil Alexov May 2013

The Role Of Protonation States In Ligand-Receptor Recognition And Binding, Marharyta Petukh, Shannon Stefl, Emil Alexov

Publications

In this review we discuss the role of protonation states in receptor-ligand interactions, providing experimental evidences and computational predictions that complex formation may involve titratable groups with unusual pKa’s and that protonation states frequently change from unbound to bound states. These protonation changes result in proton uptake/release, which in turn causes the pHdependence of the binding. Indeed, experimental data strongly suggest that almost any binding is pH-dependent and to be correctly modeled, the protonation states must be properly assigned prior to and after the binding. One may accurately predict the protonation states when provided with the structures of the unbound …


In Silico Investigation Of Ph-Dependence Of Prolactin And Human Growth Hormone Binding To Human Prolactin Receptor, Lin Wang, Shawn Witham, Zhe Zhang, Michael E. Hodsdon, Emil Alexov Jan 2013

In Silico Investigation Of Ph-Dependence Of Prolactin And Human Growth Hormone Binding To Human Prolactin Receptor, Lin Wang, Shawn Witham, Zhe Zhang, Michael E. Hodsdon, Emil Alexov

Publications

Experimental data shows that the binding of human prolactin (hPRL) to human prolactin receptor (hPRLr-ECD) is strongly pH-dependent, while the binding of the same receptor to human growth hormone (hGH) is pH-independent. Here we carry in silico analysis of the molecular effects causing such a difference and reveal the role of individual amino acids. It is shown that the computational modeling correctly predicts experimentally determined pKa’s of histidine residues in an unbound state in the majority of the cases and the pH-dependence of the binding free energy. Structural analysis carried in conjunction with calculated pH-dependence of the binding revealed that …