Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Stars

Articles 1 - 17 of 17

Full-Text Articles in Physical Sciences and Mathematics

Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Feb 2018

Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f ...


Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2017

Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M⊙ and 25.3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to ...


Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2017

Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 x 104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the ...


Gw170104: Observation Of A 50-Solar-Mass Binary Black Hole Coalescence At Redshift 0.2, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2017

Gw170104: Observation Of A 50-Solar-Mass Binary Black Hole Coalescence At Redshift 0.2, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M⊙ and 19.4-5.9+5.3M⊙ (at the 90% credible level). The black hole spins ...


Upper Limits On The Stochastic Gravitational-Wave Background From Advanced Ligo's First Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Mar 2017

Upper Limits On The Stochastic Gravitational-Wave Background From Advanced Ligo's First Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational ...


Improved Analysis Of Gw150914 Using A Fully Spin-Precessing Waveform Model, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2016

Improved Analysis Of Gw150914 Using A Fully Spin-Precessing Waveform Model, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the ...


Binary Black Hole Mergers In The First Advanced Ligo Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2016

Binary Black Hole Mergers In The First Advanced Ligo Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012 ...


Properties Of The Binary Black Hole Merger Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2016

Properties Of The Binary Black Hole Merger Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36-4+5 M and 29-4+4M; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin ...


Gw151226: Observation Of Gravitational Waves From A 22-Solar-Mass Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2016

Gw151226: Observation Of Gravitational Waves From A 22-Solar-Mass Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to ...


Tests Of General Relativity With Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. May 2016

Tests Of General Relativity With Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data ...


Gw150914: The Advanced Ligo Detectors In The Era Of First Discoveries, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Mar 2016

Gw150914: The Advanced Ligo Detectors In The Era Of First Discoveries, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10-23√/Hz at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event ...


Gw150914: Implications For The Stochastic Gravitational-Wave Background From Binary Black Holes, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Mar 2016

Gw150914: Implications For The Stochastic Gravitational-Wave Background From Binary Black Holes, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz ...


Observation Of Gravitational Waves From A Binary Black Hole Merger, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Feb 2016

Observation Of Gravitational Waves From A Binary Black Hole Merger, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0x10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent ...


Search For Gravitational Waves Associated With Γ-Ray Bursts Detected By The Interplanetary Network, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2014

Search For Gravitational Waves Associated With Γ-Ray Bursts Detected By The Interplanetary Network, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational ...


Implementation And Testing Of The First Prompt Search For Gravitational Wave Transients With Electromagnetic Counterparts, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Mar 2012

Implementation And Testing Of The First Prompt Search For Gravitational Wave Transients With Electromagnetic Counterparts, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations.

Methods. During two observing periods (Dec. 17, 2009 to Jan. 8, 2010 and Sep. 2 to Oct. 20, 2010), a low-latency analysis pipeline was used to identify ...


All-Sky Ligo Search For Periodic Gravitational Waves In The Early Fifth-Science-Run Data, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Mar 2009

All-Sky Ligo Search For Periodic Gravitational Waves In The Early Fifth-Science-Run Data, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1100Hz and with the frequency's time derivative in the range -5x10-9-0Hzs-1. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semicoherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 10-24 are obtained over a ...


Ergoregion Instability Of Black Hole Mimickers, Paolo Pani, Vitor Cardoso, Mariano Cadoni, Marco Cavaglia Aug 2008

Ergoregion Instability Of Black Hole Mimickers, Paolo Pani, Vitor Cardoso, Mariano Cadoni, Marco Cavaglia

Physics Faculty Research & Creative Works

Ultra-compact, horizonless objects such as gravastars, boson stars, wormholes and superspinars can mimick most of the properties of black holes. Here we show that these "black hole mimickers" will most likely develop a strong ergoregion instability when rapidly spinning. Instability timescales range between ∼ 10-5s and ∼ weeks depending on the object, its mass and its angular momentum. For a wide range of parameters the instability is truly effective. This provides a strong indication that astrophysical ultra-compact objects with large rotation are black holes.