Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Gravitational-wave signals

2019

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Tests Of General Relativity With Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. May 2019

Tests Of General Relativity With Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due ...


Constraining The P-Mode-G-Mode Tidal Instability With Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Feb 2019

Constraining The P-Mode-G-Mode Tidal Instability With Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (ln Bpg!pg) comparing our p-g model to a standard one. We find that the observed signal is ...


Properties Of The Binary Neutron Star Merger Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jan 2019

Properties Of The Binary Neutron Star Merger Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models ...