Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Gravitation

2018

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Search For Subsolar-Mass Ultracompact Binaries In Advanced Ligo's First Observing Run, B. P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Dec 2018

Search For Subsolar-Mass Ultracompact Binaries In Advanced Ligo's First Observing Run, B. P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 M-1.0 M using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of nonspinning (0.2 M, 0.2 M) ultracompact binaries to be less than 1.0 x 106 Gpc-3 yr-1 and the coalescence rate of a similar distribution of (1.0 M, 1.0 M) ultracompact binaries to be less …


Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Feb 2018

Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW( …