Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Atoms

2009

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Three-Body Dynamics In Single Ionization Of Atomic Hydrogen By 75 Kev Proton Impact, Ahmad Hasan, Michael Schulz, Aaron C. Laforge, Jason S. Alexander, M. F. Ciappina, M. A. Khakoo, Kisra Nayomal Egodapitiya Jul 2009

Three-Body Dynamics In Single Ionization Of Atomic Hydrogen By 75 Kev Proton Impact, Ahmad Hasan, Michael Schulz, Aaron C. Laforge, Jason S. Alexander, M. F. Ciappina, M. A. Khakoo, Kisra Nayomal Egodapitiya

Physics Faculty Research & Creative Works

Doubly differential cross sections for single ionization of atomic hydrogen by 75 keV proton impact have been measured and calculated as a function of the projectile scattering angle and energy loss. This pure three-body collision system represents a fundamental test case for the study of the reaction dynamics in few-body systems. A comparison between theory and experiment reveals that three-body dynamics is important at all scattering angles and that an accurate description of the role of the projectile-target-nucleus interaction remains a major challenge to theory.


Quantitative Rescattering Theory For Laser-Induced High-Energy Plateau Photoelectron Spectra, Zhangjin Chen, Anh-Thu Le, Toru Morishita, C. D. Lin Mar 2009

Quantitative Rescattering Theory For Laser-Induced High-Energy Plateau Photoelectron Spectra, Zhangjin Chen, Anh-Thu Le, Toru Morishita, C. D. Lin

Physics Faculty Research & Creative Works

A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent ...


Quantitative Rescattering Theory For Nonsequential Double Ionization Of Atoms By Intense Laser Pulses, Samuel Micheau, Zhangjin Chen, Anh-Thu Le, C. D. Lin Jan 2009

Quantitative Rescattering Theory For Nonsequential Double Ionization Of Atoms By Intense Laser Pulses, Samuel Micheau, Zhangjin Chen, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

Laser-induced electron recollisions are fundamental to many strong field phenomena in atoms and molecules. Using the recently developed quantitative rescattering theory, we demonstrate that the nonsequential double ionization (NSDI) of atoms by lasers can be obtained quantitatively in terms of inelastic collisions of the target ions with the free returning electrons where the latter are explicitly given by a spectrum-characterized wave packet. Using argon atoms as target, we calculated the NSDI yield including contributions from direct (e,2e) electron-impact ionization and electron-impact excitation accompanied by subsequent field ionization. We further investigate the dependence of total NSDI on the carrier-envelope phase ...