Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2017

False alarm rate

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2017

Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 x 104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M …


Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2017

Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M⊙ and 25.3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03 …