Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2010

Free electron lasers

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Differential Cross Sections For Non-Sequential Double Ionization Of He By 52 Ev Photons From The Free Electron Laser In Hamburg, Flash, Moritz Kurka, Johannes Feist, Daniel A. Horner, Artem Rudenko, Yuhai Jiang, Kai Uwe Kuhnel, Lutz M. Foucar, Thomas N. Rescigno, Clyde William Mccurdy, Renate Pazourek, Stefan Nagele, Michael Schulz, Oliver Herrwerth, Matthias Lezius, Matthias F. Kling, Markus S. Schoffler, Ali Belkacem, Stefan Dusterer, Rolf Treusch, Barry I. Schneider, Lee A. Collins, Joachim Burgdorfer, Claus Dieter Schroter Jul 2010

Differential Cross Sections For Non-Sequential Double Ionization Of He By 52 Ev Photons From The Free Electron Laser In Hamburg, Flash, Moritz Kurka, Johannes Feist, Daniel A. Horner, Artem Rudenko, Yuhai Jiang, Kai Uwe Kuhnel, Lutz M. Foucar, Thomas N. Rescigno, Clyde William Mccurdy, Renate Pazourek, Stefan Nagele, Michael Schulz, Oliver Herrwerth, Matthias Lezius, Matthias F. Kling, Markus S. Schoffler, Ali Belkacem, Stefan Dusterer, Rolf Treusch, Barry I. Schneider, Lee A. Collins, Joachim Burgdorfer, Claus Dieter Schroter

Physics Faculty Research & Creative Works

Two-photon double ionization of He is studied at the Free Electron Laser in Hamburg (FLASH) by inspecting He2+ momentum (P-(He 2+)) distributions at 52 eV photon energy. We demonstrate that recoil ion momentum distributions can be used to infer information about highly correlated electron dynamics and find the first experimental evidence for 'virtual sequential ionization'. The experimental data are compared with the results of two calculations, both solving the time-dependent Schrodinger equation. We find good overall agreement between experiment and theory, with significant differences for cuts along the polarization direction that cannot be explained by the experimental resolution …


Investigating Two-Photon Double Ionization Of D₂ By Xuv-Pump-Xuv-Probe Experiments, Yuhai Jiang, Artem Rudenko, Jhon Fredy Perez-Torres, Oliver Herrwerth, Lutz M. Foucar, Moritz Kurka, Kai Uwe Kuhnel, M. Toppin, Etienne Plesiat, Felipe Morales, Fernando Javier Martin, Matthias Lezius, Matthias F. Kling, Till Jahnke, Reinhard Dorner, Jose Luis Sanz-Vicario, Jeroen Van Tilborg, Ali Belkacem, Michael Schulz, Kiyoshi Ueda, Stefan Dusterer, Rolf Treusch, Claus Dieter Schroter, Robert Moshammer, Joachim Hermann Ullrich May 2010

Investigating Two-Photon Double Ionization Of D₂ By Xuv-Pump-Xuv-Probe Experiments, Yuhai Jiang, Artem Rudenko, Jhon Fredy Perez-Torres, Oliver Herrwerth, Lutz M. Foucar, Moritz Kurka, Kai Uwe Kuhnel, M. Toppin, Etienne Plesiat, Felipe Morales, Fernando Javier Martin, Matthias Lezius, Matthias F. Kling, Till Jahnke, Reinhard Dorner, Jose Luis Sanz-Vicario, Jeroen Van Tilborg, Ali Belkacem, Michael Schulz, Kiyoshi Ueda, Stefan Dusterer, Rolf Treusch, Claus Dieter Schroter, Robert Moshammer, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

We used a split-mirror setup attached to a reaction microscope at the free-electron laser in Hamburg (FLASH) to perform an XUV-pump-XUV-probe experiment by tracing the ultrafast nuclear wave-packet motion in the D2 +(1sσg) with <10 fs time resolution. Comparison with time-dependent calculations shows excellent agreement with the measured vibrational period of 22±4 fs in D2+, points to the importance of accurately knowing the internuclear distance-dependent ionization probability, and paves the way to control sequential and nonsequential two-photon double-ionization contributions.