Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2004

Nucleation

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Nucleation Rates Of Water And Heavy Water Using Equations Of State, Abdalla Obeidat, Jin-Song Li, Gerald Wilemski Nov 2004

Nucleation Rates Of Water And Heavy Water Using Equations Of State, Abdalla Obeidat, Jin-Song Li, Gerald Wilemski

Physics Faculty Research & Creative Works

The original formula of Gibbs for the reversible work of critical nucleus formation is evaluated in three approximate ways for ordinary and heavy water. The least approximate way employs an equation of state to evaluate the pressure difference between the new and old phases. This form of the theory yields a temperature dependence for the nucleation rate close to that observed experimentally. This is a substantial improvement over the most commonly used (and most approximate) form of classical theory.©2004 American Institute of Physics.


Nucleation Near The Spinodal: Limitations Of Mean Field Density Functional Theory, Gerald Wilemski, Jin-Song Li Oct 2004

Nucleation Near The Spinodal: Limitations Of Mean Field Density Functional Theory, Gerald Wilemski, Jin-Song Li

Physics Faculty Research & Creative Works

We investigate the diverging size of the critical nucleus near the spinodal using the gradient theory ~GT! of van der Waals and Cahn and Hilliard and mean field density functional theory ~MFDFT!. As is well known, GT predicts that at the spinodal the free energy barrier to nucleation vanishes while the radius of the critical fluctuation diverges. We show numerically that the scaling behavior found by Cahn and Hilliard for these quantities holds quantitatively for both GT and MFDFT. We also show that the excess number of molecules Dg satisfies Cahn-Hilliard scaling near the spinodal and is consistent with the …


Kinetics Of Binary Nucleation Of Vapors In Size And Composition Space, Sergey P. Fisenko, Gerald Wilemski Jan 2004

Kinetics Of Binary Nucleation Of Vapors In Size And Composition Space, Sergey P. Fisenko, Gerald Wilemski

Physics Faculty Research & Creative Works

We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent variables: the total number of molecules g and the molar composition x of the cluster. The resulting kinetic equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coefficients in cluster size and composition space are obtained. For characterization of binary nucleation in gases three criteria are established. These criteria establish the relative importance of the rate processes in cluster size and composition space for different …