Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2001

Mathematical analysis

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Quantum Phase Transition Of Itinerant Helimagnets, Thomas Vojta, Rastko Sknepnek Aug 2001

Quantum Phase Transition Of Itinerant Helimagnets, Thomas Vojta, Rastko Sknepnek

Physics Faculty Research & Creative Works

We investigate the quantum phase transition of itinerant electrons from a paramagnet to a state which displays long-period helical structures due to a Dzyaloshinskii instability of the ferromagnetic state. In particular, we study how the self-generated effective long-range interaction recently identified in itinerant quantum ferromagnets is cut off by the helical ordering. We find that for a sufficiently strong Dzyaloshinskii instability the helimagnetic quantum phase transition is of second order with mean-field exponents. In contrast, for a weak Dzyaloshinskii instability the transition is analogous to that in itinerant quantum ferromagnets, i.e., it is of first order, as has been observed …


Two-Dimensional Black Holes As Open Strings: A New Realization Of The Ads/Cft Correspondence, Mariano Cadoni, Marco Cavaglia Feb 2001

Two-Dimensional Black Holes As Open Strings: A New Realization Of The Ads/Cft Correspondence, Mariano Cadoni, Marco Cavaglia

Physics Faculty Research & Creative Works

We show that weak-coupled two-dimensional dilation gravity on anti-de Sitter space can be described by the dynamics of an open string. Neumann and Dirichlet boundary conditions for the string lead two different realizations of the anti-de Sitter/Conformal Field Theory correspondence. In particular, in the Dirichlet case the thermodynamical entropy of two-dimensional black holes can be exactly reproduced by counting the string states.