Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Physics

Photoionization

Articles 1 - 17 of 17

Full-Text Articles in Physical Sciences and Mathematics

Probing And Extracting The Structure Of Vibrating Sf₆ Molecules With Inner-Shell Photoelectrons, Ngoc-Ty Nguyen, R. R. Lucchese, C. D. Lin, Anh-Thu Le Jun 2016

Probing And Extracting The Structure Of Vibrating Sf₆ Molecules With Inner-Shell Photoelectrons, Ngoc-Ty Nguyen, R. R. Lucchese, C. D. Lin, Anh-Thu Le

Physics Faculty Research & Creative Works

We propose a scheme for probing the structure of vibrating molecules with photoelectrons generated from ultrashort soft-x-ray pulses. As an example we analyze below-100-eV photoelectrons liberated from the S(2p) orbital of vibrating SF₆ molecules to image very small structural changes of molecular vibration. In particular, photoionization cross sections and photoelectron angular distributions (PAD) at nonequilibrium geometries can be retrieved accurately with photoelectrons near the shape resonance at 13 eV. This is achieved with a pump-probe scheme, in which the symmetric stretch mode is first Raman excited predominantly by a relatively short laser pulse and then later probed at different time …


Benchmarking Accurate Spectral Phase Retrieval Of Single Attosecond Pulses, Hui Wei, Anh-Thu Le, Toru Morishita, Chao Yu, C. D. Lin Feb 2015

Benchmarking Accurate Spectral Phase Retrieval Of Single Attosecond Pulses, Hui Wei, Anh-Thu Le, Toru Morishita, Chao Yu, C. D. Lin

Physics Faculty Research & Creative Works

A single extreme-ultraviolet (XUV) attosecond pulse or pulse train in the time domain is fully characterized if its spectral amplitude and phase are both determined. The spectral amplitude can be easily obtained from photoionization of simple atoms where accurate photoionization cross sections have been measured from, e.g., synchrotron radiations. To determine the spectral phase, at present the standard method is to carry out XUV photoionization in the presence of a dressing infrared (IR) laser. In this work, we examine the accuracy of current phase retrieval methods (PROOF and iPROOF) where the dressing IR is relatively weak such that photoelectron spectra …


Electron- And Photon-Impact Ionization Of Furfural, D. B. Jones, E. Ali, K. L. Nixon, P. Limão-Vieira, M.-J. Hubin-Franskin, J. Delwiche, C. G. Ning, J. Colgan, Andrew J. Murray, Don H. Madison, M .J. Brunger Jan 2015

Electron- And Photon-Impact Ionization Of Furfural, D. B. Jones, E. Ali, K. L. Nixon, P. Limão-Vieira, M.-J. Hubin-Franskin, J. Delwiche, C. G. Ning, J. Colgan, Andrew J. Murray, Don H. Madison, M .J. Brunger

Physics Faculty Research & Creative Works

The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a" + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation …


High-Order-Harmonic Generation From Molecular Isomers With Midinfrared Intense Laser Pulses, Anh-Thu Le, R. R. Lucchese, C. D. Lin Aug 2013

High-Order-Harmonic Generation From Molecular Isomers With Midinfrared Intense Laser Pulses, Anh-Thu Le, R. R. Lucchese, C. D. Lin

Physics Faculty Research & Creative Works

We present theoretical calculations of high-order-harmonic generation (HHG) from stereoisomers of 1,2-dichloroethylene (C₂H₂Cl₂) and 2-butene (C₄H₈) based on the quantitative rescattering theory. Our results show that the HHG spectra from these cis and trans isomers with intense midinfrared laser pulses are clearly distinguishable, even when the molecules are randomly oriented, in good agreement with the recent experiments by Wonget al. [Phys. Rev. A 84, 051403(R) (2011)]. We found that the angle-averaged tunneling ionization yields and photoionization cross sections from the cis and trans isomers for both molecules are nearly identical. The origin of the differences in HHG spectra is traced …


Differential Cross Sections For Non-Sequential Double Ionization Of He By 52 Ev Photons From The Free Electron Laser In Hamburg, Flash, Moritz Kurka, Johannes Feist, Daniel A. Horner, Artem Rudenko, Yuhai Jiang, Kai Uwe Kuhnel, Lutz M. Foucar, Thomas N. Rescigno, Clyde William Mccurdy, Renate Pazourek, Stefan Nagele, Michael Schulz, Oliver Herrwerth, Matthias Lezius, Matthias F. Kling, Markus S. Schoffler, Ali Belkacem, Stefan Dusterer, Rolf Treusch, Barry I. Schneider, Lee A. Collins, Joachim Burgdorfer, Claus Dieter Schroter Jul 2010

Differential Cross Sections For Non-Sequential Double Ionization Of He By 52 Ev Photons From The Free Electron Laser In Hamburg, Flash, Moritz Kurka, Johannes Feist, Daniel A. Horner, Artem Rudenko, Yuhai Jiang, Kai Uwe Kuhnel, Lutz M. Foucar, Thomas N. Rescigno, Clyde William Mccurdy, Renate Pazourek, Stefan Nagele, Michael Schulz, Oliver Herrwerth, Matthias Lezius, Matthias F. Kling, Markus S. Schoffler, Ali Belkacem, Stefan Dusterer, Rolf Treusch, Barry I. Schneider, Lee A. Collins, Joachim Burgdorfer, Claus Dieter Schroter

Physics Faculty Research & Creative Works

Two-photon double ionization of He is studied at the Free Electron Laser in Hamburg (FLASH) by inspecting He2+ momentum (P-(He 2+)) distributions at 52 eV photon energy. We demonstrate that recoil ion momentum distributions can be used to infer information about highly correlated electron dynamics and find the first experimental evidence for 'virtual sequential ionization'. The experimental data are compared with the results of two calculations, both solving the time-dependent Schrodinger equation. We find good overall agreement between experiment and theory, with significant differences for cuts along the polarization direction that cannot be explained by the experimental resolution …


Investigating Two-Photon Double Ionization Of D₂ By Xuv-Pump-Xuv-Probe Experiments, Yuhai Jiang, Artem Rudenko, Jhon Fredy Perez-Torres, Oliver Herrwerth, Lutz M. Foucar, Moritz Kurka, Kai Uwe Kuhnel, M. Toppin, Etienne Plesiat, Felipe Morales, Fernando Javier Martin, Matthias Lezius, Matthias F. Kling, Till Jahnke, Reinhard Dorner, Jose Luis Sanz-Vicario, Jeroen Van Tilborg, Ali Belkacem, Michael Schulz, Kiyoshi Ueda, Stefan Dusterer, Rolf Treusch, Claus Dieter Schroter, Robert Moshammer, Joachim Hermann Ullrich May 2010

Investigating Two-Photon Double Ionization Of D₂ By Xuv-Pump-Xuv-Probe Experiments, Yuhai Jiang, Artem Rudenko, Jhon Fredy Perez-Torres, Oliver Herrwerth, Lutz M. Foucar, Moritz Kurka, Kai Uwe Kuhnel, M. Toppin, Etienne Plesiat, Felipe Morales, Fernando Javier Martin, Matthias Lezius, Matthias F. Kling, Till Jahnke, Reinhard Dorner, Jose Luis Sanz-Vicario, Jeroen Van Tilborg, Ali Belkacem, Michael Schulz, Kiyoshi Ueda, Stefan Dusterer, Rolf Treusch, Claus Dieter Schroter, Robert Moshammer, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

We used a split-mirror setup attached to a reaction microscope at the free-electron laser in Hamburg (FLASH) to perform an XUV-pump-XUV-probe experiment by tracing the ultrafast nuclear wave-packet motion in the D2 +(1sσg) with <10 fs time resolution. Comparison with time-dependent calculations shows excellent agreement with the measured vibrational period of 22±4 fs in D2+, points to the importance of accurately knowing the internuclear distance-dependent ionization probability, and paves the way to control sequential and nonsequential two-photon double-ionization contributions.


Probing Molecular Frame Photoionization Via Laser Generated High-Order Harmonics From Aligned Molecules, Anh-Thu Le, R. R. Lucchese, M. T. Lee, C. D. Lin May 2009

Probing Molecular Frame Photoionization Via Laser Generated High-Order Harmonics From Aligned Molecules, Anh-Thu Le, R. R. Lucchese, M. T. Lee, C. D. Lin

Physics Faculty Research & Creative Works

Present experiments cannot measure molecular frame photoelectron angular distributions (MFPAD) for ionization from the outermost valence orbitals of molecules. We show that the details of MFPAD can be retrieved with high-order harmonics generated by infrared lasers from aligned molecules. Using accurately calculated photoionization transition dipole moments for fixed-in-space molecules, we show that the dependence of the magnitude and phase of the high-order harmonics on the alignment angle of the molecules observed in recent experiments can be quantitatively reproduced. This result provides the needed theoretical basis for ultrafast dynamic chemical imaging using infrared laser pulses.


Feasibility Of Coherent Xuv Spectroscopy On The 1s-2s Transition In Singly Ionized Helium, Maximilian Herrmann, Martin K. Haas, Ulrich D. Jentschura, Franz Kottmann, Dietrich Leibfried, Guido Saathoff, Christoph Gohle, Akira Ozawa, V. Batteiger, S. Knunz, Nikolai N. Kolachevsky, H. A. Schussler, Theodor Wolfgang Hansch, Th H. Udem May 2009

Feasibility Of Coherent Xuv Spectroscopy On The 1s-2s Transition In Singly Ionized Helium, Maximilian Herrmann, Martin K. Haas, Ulrich D. Jentschura, Franz Kottmann, Dietrich Leibfried, Guido Saathoff, Christoph Gohle, Akira Ozawa, V. Batteiger, S. Knunz, Nikolai N. Kolachevsky, H. A. Schussler, Theodor Wolfgang Hansch, Th H. Udem

Physics Faculty Research & Creative Works

The 1S-2S two-photon transition in singly ionized helium is a highly interesting candidate for precision tests of bound-state quantum electrodynamics (QED). With the recent advent of extreme ultraviolet frequency combs, highly coherent quasi-continuous-wave light sources at 61 nm have become available, and precision spectroscopy of this transition now comes into reach for the first time. We discuss quantitatively the feasibility of such an experiment by analyzing excitation and ionization rates, propose an experimental scheme, and explore the potential for QED tests.


Quantitative Rescattering Theory For Laser-Induced High-Energy Plateau Photoelectron Spectra, Zhangjin Chen, Anh-Thu Le, Toru Morishita, C. D. Lin Mar 2009

Quantitative Rescattering Theory For Laser-Induced High-Energy Plateau Photoelectron Spectra, Zhangjin Chen, Anh-Thu Le, Toru Morishita, C. D. Lin

Physics Faculty Research & Creative Works

A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent …


Accurate Retrieval Of Target Structures And Laser Parameters Of Few-Cycle Pulses From Photoelectron Momentum Spectra, Samuel Micheau, Zhangjin Chen, Anh-Thu Le, J. Rauschenberger, M. F. Kling, C. D. Lin Feb 2009

Accurate Retrieval Of Target Structures And Laser Parameters Of Few-Cycle Pulses From Photoelectron Momentum Spectra, Samuel Micheau, Zhangjin Chen, Anh-Thu Le, J. Rauschenberger, M. F. Kling, C. D. Lin

Physics Faculty Research & Creative Works

We illustrate a new method of analyzing three-dimensional momentum images of high-energy photoelectrons generated by intense phase-stabilized few-cycle laser pulses. Using photoelectron momentum spectra that were obtained by velocity-map imaging of above-threshold ionization of xenon and argon targets, we show that the absolute carrier-envelope phase, the laser peak intensity, and pulse duration can be accurately determined simultaneously (with an error of a few percent). We also show that the target structure, in the form of electron-target ion elastic differential cross sections, can be retrieved over a range of energies. The latter offers the promise of using laser-generated electron spectra for …


Potential For Ultrafast Dynamic Chemical Imaging With Few-Cycle Infrared Lasers, Toru Morishita, Anh-Thu Le, Zhangjin Chen, C. D. Lin Feb 2008

Potential For Ultrafast Dynamic Chemical Imaging With Few-Cycle Infrared Lasers, Toru Morishita, Anh-Thu Le, Zhangjin Chen, C. D. Lin

Physics Faculty Research & Creative Works

We studied the photoelectron spectra generated by an intense few cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross-sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity and wavelength, these extracted elastic scattering cross-sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle …


Accurate Retrieval Of Structural Information From Laser-Induced Photoelectron And High-Order Harmonic Spectra By Few-Cycle Laser Pulses, Toru Morishita, Anh-Thu Le, Zhangjin Chen, C. D. Lin Jan 2008

Accurate Retrieval Of Structural Information From Laser-Induced Photoelectron And High-Order Harmonic Spectra By Few-Cycle Laser Pulses, Toru Morishita, Anh-Thu Le, Zhangjin Chen, C. D. Lin

Physics Faculty Research & Creative Works

By analyzing accurate theoretical results from solving the time-dependent Schrödinger equation of atoms in few-cycle laser pulses, we established the general conclusion that laser-generated high-energy electron momentum spectra and high-order harmonic spectra can be used to extract accurate differential elastic scattering and photo-recombination cross sections of the target ion with free electrons, respectively. Since both electron scattering and photoionization (the inverse of photo-recombination) are the conventional means for interrogating the structure of atoms and molecules, this result implies that existing few-cycle infrared lasers can be implemented for ultrafast imaging of transient molecules with temporal resolution of a few femtoseconds.


Few-Photon Multiple Ionization Of Ne And Ar By Strong Free-Electron-Laser Pulses, Robert Moshammer, Yuhai Jiang, L. Foucar, Artem Rudenko, Th. Ergler, Claus Dieter Schroter, S. Ludemann, Karl Zrost, Daniel Fischer, J. Titze, Till Jahnke, Markus S. Schoffler, Th Weber, Reinhard Dorner, Theo J.M. Zouros, Alexander Dorn, T. Ferger, Kai Uwe Kuhnel, S. Dusterer, R. Treusch, Paul Radcliffe, Elke Plonjes, Joachim Hermann Ullrich May 2007

Few-Photon Multiple Ionization Of Ne And Ar By Strong Free-Electron-Laser Pulses, Robert Moshammer, Yuhai Jiang, L. Foucar, Artem Rudenko, Th. Ergler, Claus Dieter Schroter, S. Ludemann, Karl Zrost, Daniel Fischer, J. Titze, Till Jahnke, Markus S. Schoffler, Th Weber, Reinhard Dorner, Theo J.M. Zouros, Alexander Dorn, T. Ferger, Kai Uwe Kuhnel, S. Dusterer, R. Treusch, Paul Radcliffe, Elke Plonjes, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne2+ production reveals the dominance of nonsequential two-photon double ionization at intensities of I< 6 x 1012W/cm2 and significant contributions of three-photon ionization as I increases. Ne2+ recoil-ion-momentum distributions suggest that two electrons absorbing "instantaneously" two photons are ejected most likely into opposite hemispheres with similar energies.


Photoionization Broadening Of The 1s-2s Transition In A Beam Of Atomic Hydrogen, Nikolai N. Kolachevsky, Martin K. Haas, Ulrich D. Jentschura, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Ronald Holzwarth, Th H. Udem, Christoph H. Keitel, Theodor Wolfgang Hansch Jan 2006

Photoionization Broadening Of The 1s-2s Transition In A Beam Of Atomic Hydrogen, Nikolai N. Kolachevsky, Martin K. Haas, Ulrich D. Jentschura, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Ronald Holzwarth, Th H. Udem, Christoph H. Keitel, Theodor Wolfgang Hansch

Physics Faculty Research & Creative Works

We consider the excitation dynamics of the two-photon 1S - 2S transition in a beam of atomic hydrogen by 243 nm laser radiation. Specifically, we study the impact of ionization damping on the transition line shape, caused by the possibility of ionization of the 2S level by the same laser field. Using a Monte Carlo simulation, we calculate the line shape of the 1S - 2S transition for the experimental geometry used in the two latest absolute frequency measurements [M. Niering, Phys. Rev. Lett. 84, 5496 (2000) and M. Fischer, Phys. Rev. Lett. 92, 230802 (2004)]. The calculated line shift …


Coincident Fragment Detection In Strong Field Photoionization And Dissociation Of H₂, Horst Rottke, Christoph Trump, M. Wittmann, Georg Korn, Wolfgang Sandner, Robert Moshammer, Alexander Dorn, Claus Dieter Schroter, Daniel Fischer, Jose R. Crespo Lopez-Urrutia, Paul B. Neumayer, J. Deipenwisch, C. Hohr, Bernold Feuerstein, Joachim Hermann Ullrich Jul 2002

Coincident Fragment Detection In Strong Field Photoionization And Dissociation Of H₂, Horst Rottke, Christoph Trump, M. Wittmann, Georg Korn, Wolfgang Sandner, Robert Moshammer, Alexander Dorn, Claus Dieter Schroter, Daniel Fischer, Jose R. Crespo Lopez-Urrutia, Paul B. Neumayer, J. Deipenwisch, C. Hohr, Bernold Feuerstein, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

An investigation of the correlated electronic and nuclear motion in fragmentation of H2 in 4 x 1014 W/cm2, fs laser pulses at 795 nm was presented using the electron-ion momentum spectroscopy. The channel selective electron energy distribution indicated assumption of a new H2 ionization mechanism to interpret the differences found in the fragmentation channels. The results showed that the momentum distribution of H+ ions in the dissociation channels H(1s) + H+ + e- and 2H+ + 2e- was independent of the kinetic energy of photoelectrons.


Short-Pulse Laser-Induced Stabilization Of Autoionizing States, Heider N. Ereifej, J. Greg Story Sep 2000

Short-Pulse Laser-Induced Stabilization Of Autoionizing States, Heider N. Ereifej, J. Greg Story

Physics Faculty Research & Creative Works

Atoms in doubly excited states above the first ionization limit can decay via autoionization in which an electron is emitted leaving an ion, or by photoemission which leaves the atom in a singly excited state. In this paper, it is demonstrated that interaction between the atoms and a laser pulse that is short compared to the autoionization lifetime can lead to large enhancement of the photoemission process by stimulating the atoms to emit a photon. Since the resultant singly excited atoms do not autoionize, this process can be viewed as an enhancement of the stabilization of the doubly excited atoms …


Direct Measurement Of Oscillations Between Degenerate Two-Electron Bound-State Configurations In A Rapidly Autoionizing System, Heider N. Ereifej, J. Greg Story Jul 2000

Direct Measurement Of Oscillations Between Degenerate Two-Electron Bound-State Configurations In A Rapidly Autoionizing System, Heider N. Ereifej, J. Greg Story

Physics Faculty Research & Creative Works

In this paper we report a direct observation of the oscillation between bound-state configurations in a rapidly autoionizing system. Calcium atoms were excited to a pure 4p3/2nd two-electron configuration using a 500-fsec laser pulse. The initial 4p3/2nd doubly excited state is energy degenerate with the 4p1/2n'd states and several continuum channels. Because of the short-pulse excitation, the initial state of the atom is not an energy eigenstate, but a nonstationary wave packet. As a result, oscillations between the two bound configurations were produced. These oscillations were measured by scanning the timing of a second …