Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Engineering

Superexchange Interactions

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

The Effect Of Cu-Doping On The Magnetic And Transport Properties Of La₀.₇Sr₀.₃Mno₃, M. S. Kim, Jinbo Yang, Qingsheng Cai, X.-D. Zhou, William B. Yelon, Paul Ernest Parris, William Joseph James Jan 2005

The Effect Of Cu-Doping On The Magnetic And Transport Properties Of La₀.₇Sr₀.₃Mno₃, M. S. Kim, Jinbo Yang, Qingsheng Cai, X.-D. Zhou, William B. Yelon, Paul Ernest Parris, William Joseph James

Physics Faculty Research & Creative Works

The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1xCuxO3 (0<=x<=0.20) have been studied using neutron diffraction, magnetization, and magnetoresistance (MR) measurements. All samples show the rhombohedral structure with the R[overline 3]c space-group from 10 K to room temperature (RT). Neutron diffraction data suggest that some of the Cu ions have a Cu3+ state in these compounds. The substitution of Mn by Cu affects the MnO bond length and Mn-O-Mn bond angle resulting from the minimization of the distortion of the MnO6 octahedron. Resistivity measurements show that a metal to insulator transition occurs for the x>=0.15 samples. The x=0.15 sample shows the highest MR([approximate]80%), which might result from the co-existence of Cu3-Cu2+ and the dilution effect of Cu-doping on the double exchange interaction